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Cells do not live in a vacuum, but in a milieu defined by cell–cell communication that can be measured via
emerging high-resolution spatial transcriptomics approaches. However, analytical tools that fully leverage
such data for kinetic modeling remain lacking. Here we present Spateo (aristoteleo/spateo-release), a general
framework for quantitative spatiotemporal modeling of single-cell resolution spatial transcriptomics. Spateo
delivers novel methods for digitizing spatial layers/columns to identify spatially-polar genes, and develops a
comprehensive framework of cell-cell interaction to reveal spatial effects of niche factors and cell
type-specific ligand-receptor interactions. Furthermore, Spateo reconstructs 3D models of whole embryos,
and performs 3D morphometric analyses. Lastly, Spateo introduces the concept of “morphometric vector
field” of cell migrations, and integrates spatial differential geometry to unveil regulatory programs underlying
various organogenesis patterns of Drosophila. Thus, Spateo enables the study of the ecology of organs at a
molecular level in 3D space, beyond isolated single cells.
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Introduction
Cells exist in complex three-dimensional microenvironments shaped by the collective activities
of neighboring cells of many types and in many states, that together dictate tissue-level form
and function (Halpern et al., 2017; Lécuyer et al., 2007; Lee et al., 2022; Lohoff et al., 2022;
McCaffrey et al., 2022; Parigi et al., 2022; Scadden, 2014) and change over time (Colom et al.,
2020; Garcia-Alonso et al., 2021; Mantri et al., 2021; Misra et al., 2021). Within these
microenvironments, constituent cells influence one another through direct cell-cell interactions,
physical contacts (Kechagia et al., 2019) and biochemical cues derived from secreted factors
(Batlle et al., 2002; Scadden, 2006). This multidimensionality has been difficult to assay due to
methodological limitations that constrain high-quality profiling of multiple tissue slices across
space and time, and the lack of suitable computational analysis tools capable of linking
molecular measurements to 4D processes at scale.

The advent of spatial transcriptomics (ST) has enabled characterization of intercellular
interactions (Arnol et al., 2019; Cang and Nie, 2020; Ji et al., 2020; Tanevski et al., 2022; Yuan
and Bar-Joseph, 2020), investigation of processes underlying abnormal, pathological tissue
organization in health and disease (Boyd et al., 2020; Chen et al., 2020; Elmentaite et al., 2021;
Hwang et al., 2022; Janosevic et al., 2021; Ji et al., 2020; Kuppe et al., 2022; Ma et al., 2021;
Maniatis et al., 2019), and general attribution of sources of cell-to-cell heterogeneity and
dynamism (Asp et al., 2019; Fawkner-Corbett et al., 2021; Garcia-Alonso et al., 2021). These
methods can be categorized as imaging-based in situ approaches, such as FISSEQ (Lee et al.,
2014), STARMap (Wang et al., 2018), expansion sequencing (ExSeq) (Alon et al., 2021),
seqFISH (Eng et al., 2019; Lubeck et al., 2014) and MERFISH (Chen et al., 2015), or ex situ
sequencing-based approaches such as Visium (Ståhl et al., 2016), Slide-seq (Rodriques et al.,
2019; Stickels et al., 2021), DBiT-seq (Liu et al., 2020), and HDST (Vickovic et al., 2019) with
relative low spatial resolution, and the emerging single cell/subcellar resolution approaches,
including Seq-Scope (Cho et al., 2021), Pixel-seq (Fu et al., 2021b) and the recent Stereo-seq
(Chen et al., 2022; Liu et al., 2022; Wang et al., 2022; Wei et al., 2022; Xia et al., 2022),
characterized by a large field of view (up to 13 x 13 cm2) that crucially enables simultaneous
profiling of multiple adjacent tissue slices while eliminating platform effects, potentiating efforts
to characterize the multidimensional environments of tissues and organs.

While there has been rapid advances in the technologies for collecting high resolution spatial
transcriptomic data, the computational tools for analyzing such data lag far behind, especially
when applied to jointly study cellular resolution and system-level spatiotemporal dynamics
because no uniform multi-scale kinetic approaches are available. To best use the generated
data, especially those from high resolution, large-field approaches, and to perform kinetic and
predictive analyses that result in novel biological insights, a considerable advance in
computational and toolkit development is necessary. Several ST analysis methods exist for a
number of applications, such as performing spatially-aware clustering (Dong and Zhang, 2022;
Fu et al., 2021a; Hu et al., 2021; Zhao et al., 2021; Zhu et al., 2018), finding potential hotspots
of ligand-receptor interactions (Arnol et al., 2019; Cang and Nie, 2020; Tanevski et al., 2022;
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Yuan and Bar-Joseph, 2020), identifying gene expression modules over space (Jerby-Arnon
and Regev, 2022) and identifying spatially-variable genes (Edsgärd et al., 2018; Sun et al.,
2020; Svensson et al., 2018). Additionally, integrative toolkits (e.g. Giotto (Dries et al., 2021),
stLearn (Pham et al., 2020) and Squidpy (Palla et al., 2022)) provide statistical libraries and
facile visualization options in an uniformed environment. Although powerful, existing spatial
analyses methods and tools are in general not suitable for high-resolution spatial
transcriptomics data and kinetic multi-dimensional (2D or 3D spatial and 4D spatiotemporal)
spatiotemporal modeling. As a result, the field currently relies on descriptive approaches that
are limited in their ability to generate predictions and uncover mechanisms in complex dynamic
tissues. Thus one of the biggest challenges now is how to best leverage the advantage of next
generation spatial transcriptome techniques such as Stereo-seq and related approaches to build
an analytical framework to achieve single cell resolution and 3D spatial transcriptomics
modeling over time and space.

To address these unmet needs, here we introduce Spateo, a modular computational platform
providing a comprehensive environment for end-to-end analysis of single-cell resolution spatial
transcriptomic data that connects molecular observations to two-dimensional patterns and
three-dimensional dynamics through advanced spatiotemporal modeling, and demonstrate its
integration with next generation spatial transcriptome techniques and application in four different
tissues to extract biological insights. Overall, Spateo delivers four major innovations (Fig. 1,
Supplementary Table 1). First, Spateo identifies spatial polarity/gradient genes (e.g. neuronal
layer specific genes) by solving a partial differential equation to digitize layers and columns of a
spatial domain. Second, Spateo implements a full suite of spatially-aware modules for
differential expression inference, including novel parametric models for spatially-informed
prediction of cell-cell interactions and interpretable estimation of downstream effects. Third,
Spateo enables reconstruction of 3D whole-organ models from 2D slices, identifying different
“organogenesis modes” (patterns of cell migration during organogenesis) for each organ and
quantifying morphometric properties (such as organ surface area, volume, length and cell
density) over time. Fourth, Spateo brings in the concept of the “morphometric vector field” that
predicts migration paths for each cell within an organ in a 3D fashion and reveals principles of
cell migration by exploring various differential geometry quantities.

Spateo facilitates a shift in single-cell analysis, from the conventional, reductionist cell-centric
focus to embracing the tissue as a whole, allowing ultra-fine, multi-dimensional spatial and
temporal examination of molecular mechanisms. Spateo is generally applicable to any
sequencing-based or imaging-based spatial transcriptomic readouts and can be used in
conjunction with dynamo (Qiu et al., 2022), a general framework for RNA velocity vector field
analyses, to enable quantitative and predictive analyses of spatiotemporal kinetics of cell fate
transitions. Extensive tutorials, workflows and documentation are provided at
https://spateo-release.readthedocs.io/en/latest/, and the open-source toolkit can be found at
https://github.com/aristoteleo/spateo-release, where community contributions are welcome.
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Results

Spateo dissects the architecture and composition of tissues
domains, identifying domain-specific and spatial polarity genes

A full understanding of tissue architecture depends on the ability to delineate spatial domains
(e.g., corresponding to anatomical or histological regions of interest), and to characterize spatial
dependencies in gene expression and cell type distribution. Accordingly,we introduce the
spatially-constrained clustering (SCC) algorithm which identifies continuous spatial domains
using both gene expression similarity and spatial proximity (STAR Methods). To quantify the
spatial cell type composition, we developed a cell segmentation method (Starro) that has been
integrated as part of Spateo (see our Cell segmentation webpage, will be reported elsewhere),
which segments single cells based on RNA intensity. These segmented single cells can then be
clustered using the aggregated expression matrix from the segmentations, annotated based on
cluster-specific markers, and finally projected back to the physical space to reveal the spatial
distribution of distinct cell types.

Simultaneous spatial domain and cell type annotations enable a broad range of novel analyses,
including: first, investigating the contribution of each cell type to different domains and vice
versa; second, analyzing the spectrum of spatial enrichment or dispersion of different cell types;
third, identifying genes or gene archetypes (clusters of genes whose expression shows
characteristic spatial distribution) that are specifically enriched in a particular spatial domain;
fourth, studying how cell types colocalize and interact with each other; fifth, computationally
defining arbitrarily-shaped spatial layers or columns of a tissue domain; and lastly discovering
“polarity genes” that change along different layers or columns.

The mouse adult coronal hemibrain consists of a complex array of highly specialized neuronal
cell types that forms characteristic domains (Narayanan et al., 2017; Radnikow and Feldmeyer,
2018) with distinct functionalities (e.g., the striatum is responsible for regulating motor-functions
and reward behaviors; and the ventricle mainly cushions and protects the brain, etc.), thus
providing an ideal system to develop, benchmark and test algorithms for the aforementioned
tasks. Using Stereo-seq, we obtained a spatial transcriptomic dataset sampled from a mouse
adult coronal brain section. We first implemented SCC to identify 18 continuous spatial domains
(Fig. 2a, Fig. S1a, b, see STAR Methods). We next segmented cells based on RNA signal
(Fig. S1c), resulting in 11,854 cells with about 400 genes and 600 UMIs per cell, sufficient for
cell type identification (Fig. S1d). We identified a total of 26 cell types, each characterized by
specific markers, for example Slc1a3, Mag, Slc17a7 and Gad1 for astrocytes (AST),
oligodendrocytes (OLIG), excitatory neurons (EX), and inhibitory neurons (IN), respectively (Fig.
2b,c). Compared to the Louvain algorithm and SpaGCN, SCC outperforms the Louvain
algorithm and performs comparably to SpaGCN in obtaining continuous spatial domains (Fig.
S1a).
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To investigate the interaction landscape of spatial domain and cell type, we computed the cell
type composition of each spatial domain (Fig. 2c, Fig. S1e). We found spatial domains
characterized by enrichment of specific cells. For example, the isocortex domain is enriched
with Slc17a7-expressing excitatory neurons, while a Cux2-expressing intratelencephalic
subpopulation is enriched in the subcortical layer L2/3 domain (Fig. 2c). We identified spatial
domain-specific genes and gene expression archetypes. Analysis of the fiber tract, thalamus
and striatum archetypes reveal different marker genes (Plp1, Ntng1, and Phactr1, respectively)
(Fig. 2d). Gene ontology (GO) enrichment analyses of associated genes of identified
archetypes are enriched in nervous system development related biological processes (BP),
such as myelination (archetypes 11, fiber tract related) and dendrite development (archetypes 5,
striatum related) (Fig. S1f). To analyze the spatial distribution of each cell type, we used
Moran’s I (Moran, 1950), a quantification of the tendency of nearby samples to have similar
values, to identify cell types that are spatially enriched or dispersed (Fig. S1g). We found cell
types such as dentate gyrus granule cells (GN DG) show strong spatial enrichment while other
cell types, such as Pvalb+ inhibitory neurons and microglia, are more dispersed (Fig. S1h).

In addition to spatial-aware clustering, Spateo is able to use spatial information to describe
additional aspects of tissue architecture, such as cell-type to cell-type colocalization and
spatially-dependent gene expression variation along arbitrary axes, constituting means of
identifying the most interesting patterns for downstream analyses, e.g. specific cell type pairs
that can be used for cell-cell communication analyses or genes that may be important for
domain-specific functions. Using the cell-by-cell adjacency matrix and cell-type identity matrix to
quantify cell type colocalization (STAR Methods), we found that OLIG cells strongly colocalized
with oligodendrocyte progenitor cells (OPCs) across different distance scales (Fig. 2e, Fig. S1i),
which is consistent with the fact that OPCs are potential progenitors for OLIG cells. To define
the spatial columns and layers of a spatial domain with any arbitrary shape, we used a
digitalization approach (Fig. 2g-i, STAR Methods) based on solving a potential equation to
partition the neuronal cortex into 20 layers and 100 columns and identified genes that
significantly change along different layers or columns (Fig. 2j, Fig. S1j). For example, we found
peak expression of known coronal markers Tle4 (Isocortex layer 4), Etv1 (L5), Rorb (L6) at
digital layers 5, 10 and 15, respectively. We also detected Coch, Rorb, Man1a, Npnt, Scnn1a at
the lateral, dorsal and medial columns, respectively, consistent with the known order of these
markers for cortical functional areas (auditory area, somatosensory area, motor area,
retrosplenial area) (Weed et al., 2019) (Fig. 2k); these column-specific genes are difficult to
identify with other spatially varying gene detection methods (Ma et al., 2022).

In summary, the above analyses demonstrate Spateo’s power in revealing spatial domains,
analyzing cell type compositions, characterizing gene expression archetypes and finding spatial
polarity genes via spatial domain digitization, each of which is generally applicable to many
spatial transcriptomics technologies(Cho et al., 2021; Eng et al., 2019; Stickels et al., 2021;
Wang et al., 2018; Xia et al., 2019) and biological systems.
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Spateo predicts cell-cell interactions and characterizes potential
downstream effects of intercellular signaling
Tissue phenotypes and intercellular dynamics are shaped by the collective signaling events that
occur among constituent cells in spatial microenvironments (Baccin et al., 2020; McCarthy et al.,
2020; Rodda et al., 2018); these events are crucial to understanding cellular behavior over 3D
space and across time. However, available tools for cell-cell communication analysis are limited
in key aspects; for example some methods do not consider spatial distance (Browaeys et al.,
2020; Efremova et al., 2020; Wilk et al., 2022), are restricted to potential limited ligand and
receptor repertoires known from experimental evidence (Cang and Nie, 2020; Efremova et al.,
2020; Wilk et al., 2022; Yuan and Bar-Joseph, 2020), and do not measure cellular
communication (Yuan and Bar-Joseph, 2020). Furthermore, methods that characterize potential
interaction effects provide limited insight on the cells or cell types involved (Arnol et al., 2019;
Browaeys et al., 2020). In Spateo, we unify spatial information and existing statistical
approaches for identifying ligand-receptor (L-R) interactions, and apply novel spatial-aware
regression methods to model transcriptomic data and reveal potential effects of interaction (Fig.
3a).

As intercellular communication is distance-limited (Francis and Palsson, 1997), to reduce false
positives, Spateo considers spatial proximity for paired cell types by sifting both cell types
whose corresponding cells are in each others’ local neighborhoods and determining likely
interactions in a data-driven manner (see STAR Methods). Phenotypic changes can be induced
by the action of subsequentially coordinated gene expression changes downstream of
intercellular interaction events. These intercellular dependencies can be attributed to L-R
interactions or other diverse molecular mechanisms, such as direct exosomal delivery (Mathieu
et al., 2019). To predict in an unbiased manner the downstream effects of intercellular
interaction on gene expression, we introduce the niche regression model (model I in Fig. 3a,
right panel, Fig. S3a, see STAR Methods for details), which aims to identify genes with altered
expression where particular cell type pairs colocalize (henceforth, this will be described as
“niche regression”). Although useful to infer potential effects of cellular communication, the niche
regression model cannot inform which ligand(s) and receptor(s) caused the observed
expression. To address this need, we introduce Spatially-aware Ligand:receptor-based
Inference of Cell type-specific Effects (SLICE) (model II in Fig. 3a, right panel, see STAR
Methods for details), a spatially-lagged regression approach essentially aiming to identify
altered gene expression at locations where particular cell type pairs both colocalize and express
specific combinations of ligand and receptor.

We utilized each of these tools to comprehensively characterize the interaction landscapes in
the axolotl brain, in the context of the remarkable nervous system regeneration that can occur in
these amphibians (Amamoto et al., 2016). Time course Stereo-seq was previously used to
collect samples throughout this process, identifying neural-stem-like ependymoglial cell (EGC)
states that may mediate this process (Wei et al., 2022) (Fig. S2a). We used Spateo to describe
the interaction landscape of one such state, reactive EGCs (reaEGCs). Eighteen cell types were
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found to exist two days post-injury (Fig. 3b, Fig. S2b-d), including reaEGCs and an emergent
population of adjacent, immature wound-stimulated neurons (WSNs) appearing only in the
injured hemisphere (Fig. 3c). Several additional cell types could be found in proximity to
reaEGCs, including medial- and dorsal-pallium excitatory neurons (mpEX and dpEX,
respectively), WNT+ EGCs (wntEGC), and microglia (MCG), constituting clusters potentially
capable of inducing or promoting regenerative processes through cell-cell communications
(Fig. S2e).

We first derived enriched ligand-receptor interactions for paired cell types, finding that many of
the significantly predicted interactions for the injured hemisphere involved either reaEGCs or
WSNs, although many cell types were predicted to be involved as either ligands or receptors
(Fig. 3d). Although the interaction landscape was heterogeneous over time as various cell types
changed in prevalence (Fig. S2g-h), for the injured hemisphere two days post-injury,
pleiotrophin (PTN)-syndecan 1 (SDC1), tenascin C (TNC)-SDC1, and L1 cell adhesion molecule
(L1CAM)-ERBB3 emerged as the most notable interactions, with ligands enriched in reaEGCs
and receptors enriched in WSNs. Matrix metalloproteinase-7 (MMP7)-SDC1 emerged as a
sparser but highly-specific interaction between neighboring reaEGCs and WSNs (Fig. 3d-f Fig.
S2f). In addition to involvement in known ontogenic and regenerative processes(Faissner et al.,
2017; Iseki et al., 2002; Mouthon et al., 2020; Rojas-Muñoz et al., 2009), these molecules are
enriched in reaEGCs, WSNs and adjacent radial glia, constituting a potential mutually activating
relationship between reaEGC and neural progenitors. Notably, expression of PTN, TNC and
SDC1 in reaEGCs (Fig. S6b) suggests a unique pleiotropic effect in actively proliferating as well
as promoting differentiation and mitogenesis in surrounding cells in response to traumatic brain
injury (Fig. 3g). Having identified multiple potential ligand-receptor mechanisms, we fitted niche
regression models and SLICE models to identify potential downstream effects of cellular
interaction unconstrained by particular molecular pairs and specific to the PTN-SDC1,
TNC-SDC1 and L1CAM-ERBB3 interactions, respectively. From our niche regression models,
we queried the effect on gene expression of cell type composition in the local neighborhood of
each cell across the tissue, revealing the positive effect of WSNs on regenerative factors such
as ATF3 (Seijffers et al., 2007) and vimentin(Perlson et al., 2005) in reaEGCs (Fig. S3b) and
the pervasive influence of fibroblastic vascular leptomeningeal cells (VLMCs), perhaps
attributable to the fundamental importance of extracellular matrix interaction to growth,
proliferation, differentiation and response to signals (Chaudhuri et al., 2020; Discher et al., 2005)
(Fig. 3i, Fig. S3f-g). We also revealed a potential axis of communication between reaEGCs and
other radial glial cells (sfrpEGC, wntEGC), with the upregulation of WNT-pathway modulator
SFRP1 at the reaEGC-sfrpEGC/wntEGC interface lending support to the hypothesized origin of
reaEGCs from the latter two cell populations(Wei et al., 2022). SLICE models revealed an
upregulation of integrins and growth-promoting, axonogenic molecules such as HRAS (Fivaz et
al., 2008) (Fig. 3j) in association with significant cell type-specific signaling (Fig. S6); previously
characterized biological relationships between PTN and identified molecules(Himburg et al.,
2014) lend support to the hypothetical effect of PTN signaling on growth and differentiation.

Spateo’s spatially-aware models offer a flexible framework to connect gene expression patterns
to cell-cell interaction. Any number of genes of interest can be modeled with either the niche
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regression or SLICE models, enabling identification of putative mechanisms driving pathways
hypothesized to have some effect on the phenotype, e.g. glial differentiation, Wnt signaling, and
upregulation of translation in the case of the injured brain (Fig. S3b-e, Fig. S4), or, starting from
all genes measured, enabling unbiased identification of genes strongly influenced by the local
microenvironment. Applied to the axolotl sample, the latter approach revealed genes highly
dependent on proximity of other sender cells to reaEGCs, including many genes nearly
completely polarized along the interface with another cell type (Fig. S5). Using Spateo’s cell-cell
interaction inference and gene expression modeling capabilities, we identified robust
regeneration signatures within the wounded axolotl telencephalon, related these signatures to
one another in the context of the physical space, and demonstrated Spateo’s broad applicability
to numerous questions involving intercellular interactions.

Spateo reveals spatially dependent gene regulation via RNA
velocity vector field analyses
RNA velocity vector field analyses are powerful tools to explore RNA kinetics and underlying
gene regulatory networks during dynamical biological processes (Qiu et al., 2022). However,
RNA velocity has been difficult to calculate from previous spatial transcriptomic data due to their
low spatial resolution and poor RNA capture efficiency (Asp et al., 2019). With the high RNA
capture and high field-of-view of single-cell-resolved next generation spatial transcriptomic
techniques, such as Stereo-seq, it is possible to perform single cell RNA velocity vector field
analyses at the scale of an organ.

The heart, one of the first organs to appear during mammalian embryogenesis, is a highly
structured organ which consists of a relatively small number of cell types, making it suitable for
comprehensive RNA velocity vector field characterization. Using Stereo-seq, we previously
profiled mice embryos that sampled cells from the heart extensively from E9.5 (embryonic day
9.5) to E16.5 in (Chen et al., 2022).

We used this dataset to investigate the spatial distribution of cardiac cell types over time and
space and performed RNA velocity vector field analyses based on the intron and exon
information  of the mouse heart during mouse organogenesis (Fig. S7a).

We used three cardiac specific markers (Myl2, Myl7, Actc1) (Chen et al., 2022) to identify the
region corresponding to the heart on each embryo slice and then manually extracted the cardiac
cells from these regions (Fig. S7b). Next we leveraged Starro to segment single cells in these
regions using RNA intensity. The segmentation resulted in a spatially-resolved heart cell atlas of
21,075 cells from a total of 16 slides from E9.5 to E16.5, collected at one day intervals. After
preprocessing, clustering and marker calling, we identified a total of ten cell types, including
cardiomyocyte progenitor cells (CMPs) and several cardiomyocyte subtypes (CMSs), smooth
muscle cells, epicardical / fibroblast cells, macrophages and others (Fig 4a-c and STAR
Methods). We found strong spatial as well as temporal enrichment of these cell types. For
example, CMPs are enriched at earlier time points (E9.5-E12.5) and epicardical cells are
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enriched only in the outer-layer of the heart, surrounding the CMSs (Fig. 4a). Furthermore, the
identified region-specific CMSs, such as atrial cardiomyocytes and ventricle cardiomyocytes, are
characterized by spatially-restricted expression of Nppa and Ckm, respectively (Fig. 4c, Fig.
S7c, d) (Litviňuková et al., 2020). We next performed spatially resolved RNA velocity vector field
analyses of the maturation of either cardiomyocytes, or that of the fibroblast cells from epicardial
cells (Meilhac and Buckingham, 2018) (Fig. 4d-h, Fig. S7e). For the cardiomyocytes, this
revealed a bifurcation trajectory starting from the CMP cells with low expression of Ttn (a marker
of mature CMs) (Litviňuková et al., 2020) to either a mixture of ventricular or atrial
cardiomyocytes on the left side of the bifurcation or to right ventricular cardiomyocytes on the
right side with high expression of Ttn (Fig. 4d). In order to reveal the spatiotemporal regulation
of the cardiomyocyte maturation, we collected a set of 36 cardiac TFs (transcription factors) for
RNA Jacobian analysis (Herrmann et al., 2012), to reveal how the increase of a regulator (e.g. a
TF) would affect the velocity of a potential target ((Qiu et al., 2022) and see STAR Methods).
We found, for example, a widespread activation from Tbx5 to Gata4 (Herrmann et al., 2012)
during the early and middle stages of the cardiomyocyte maturation (Fig. 4e left). Of note, this
activation is restricted to the CMs but not present in the surrounding epicardial cells (Fig. 4
middle). On the contrary, regulation from Tbx5 to Mef2c (Herrmann et al., 2012) is positive in
the epicardial cells but repressive in the CMs, revealing an interesting inverse pattern of
regional specificity of this regulation (Fig. 4e right). The vector field approach enables in silico
prediction of the effects from genetic perturbations at scale. We therefore investigated the
potential resultant cell fate changes following genetic perturbation over space; computationally,
this strategy enables genome-wide predictions in spatial data that would otherwise be
inaccessible experimentally (Jin et al., 2020) (Fig. 4f). To demonstrate this, we first simulated
Tbx5 knockdown, predicting that knockdown of Tbx5 would lead to dedifferentiation of mature
cardiomyocytes (Fig. 4f top). Secondly, we found that although the expression of both the direct
target Gata4 and the indirect target Ttn had repression after Tbx5 knockout, the prior showed
more uniform repression (Fig. 4f bottom). Furthermore, Tbx5 knockdown seemed to activate
the expression of Gata4 / Ttn in epicardial cells, again revealing the heterogeneity of spatial
regulation, and implies that Tbx5 may be an activator in CMs but a repressor in the surrounding
epicardial cells (Fig. 4f bottom).

On fibroblast cells, we revealed a linear maturation path from cells with low expression to cells
with high expression of Postn, Fbln2, Col1a1, known markers of cardiac fibroblast cells (Fig. 4g)
(Litviňuková et al., 2020). RNA Jacobian analysis of cardiac regulator Tcf21 (Kanisicak et al.,
2016) to Col1a1 revealed a global activation (Fig. 4h left), which is restricted to the surrounding
epicardial cells but not to the inner CMs (Fig. 4h right). Similarly, in silico perturbation also
revealed that knockdown of Tcf21 leads to partial dedifferentiation of mature fibroblasts in the
middle fibroblast maturation stage and partial repression of Col1a1 in relative inner region of the
epicardium layer (Fig. 4h middle, right). This prediction is in line with other studies showing
that Tcf21 is a key regulator that controls the fate decision between fibroblast cells and smooth
muscle cells involved in epicardial cell differentiation (Hu et al., 2020).

Collectively, these analyses showcase how the combination of Spateo with Dynamo’s RNA
velocity vector field (Qiu et al., 2022) can reveal spatially-dependent gene regulation during
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heart maturation, providing important insights into the spatiotemporal control underlying
complex cell state transitions.

Spateo reconstructs 3D in silico models and performs
morphometric analyses with sequential spatial transcriptomics
measurements
The formation of an embryo and constituent organs is characterized by specific “organogenesis
modes”, dynamic patterns of organ morphogenesis orchestrated by sequential gene regulatory
programs. These gene programs also dictate hierarchical cell fate specification and organization
into complex three-dimensional units of structure and function (Olson, 2006). However, technical
challenges in penetrating the depth of a tissue or organ for in situ sequencing currently prohibit
3D spatial transcriptomics. As a result, existing spatial analyses are generally two-dimensional
and static. To fulfill this unmet gap, in Spateo we computationally reconstruct 3D models of
embryos and organs using multiple adjacent slices of embryos or organs. Furthermore, going
beyond merely aliging and integrating spatial transcriptomics data, as demonstrated in (Zeira et
al., 2022) , we developed a general 3D modeling framework in Spateo that 1) align cells from
multiple embryonic slices in 3D space, 2) build models of such aligned 3D point clouds (cells), 3)
analyze the reconstructed 3D models and their constituent organs, 4) identify interesting
continuous gene expression patterns in 3D space, and 5) unveil various “organogenesis modes''
and morphometric kinetics during embryogenesis (see STAR Methods for details, Fig. 5a, and
Supplementary Animation 1).

We demonstrate the 3D reconstruction and modeling of Spateo using continuous slices of the
whole Drosophila embryo generated for this study (STAR Methods) that leverage the large
field-of-view of Stereo-seq (Wang et al., 2022). We reconstructed in silico 3D models of
Drosophila embryos at four stages (E7-9h, E9-10h, E14-16h, and E16-18h), and focused on
investigating the 3D gene expression pattern for the E7-9 embryo. We identified principal
components of the reconstructed embryo as its A-P or D-V axis in 3D space (Fig. S8, STAR
Methods). We next performed a GLM regression to identify genes that significantly change
along the axis, for example Rho1, an actin cytoskeleton organization and morphogenesis
related gene, along the D-V axis (Fig. 5b). GO enrichment analyses of all the D-V
axis-dependent genes revealed strong enrichment of D-V patterning and specification-related
pathways (Fig. 5c). Similarly, we identified Rac1 as a gene significantly changing along the
principal curve (a curve that passes through the middle of the point clouds of a particular organ
in 3D space, see STAR Methods) of the central nervous system (CNS). This is in line with
Rac1’s role in axon outgrowth and cell migration (Luo et al., 1994) (Fig. 5d), and the associated
GO enrichment analyses revealed many neuronal processes, such as CNS development and
head involution (Fig. 5e). 3D principal curve-based cell density analysis revealed CNS cells to
be most dense at the two ends of the CNS (Fig. 5f, Supplementary Table 2).

Our 3D models enabled us to investigate the kinetics underlying “organogenesis modes”. We
showcase four general “organogenesis modes”, or dynamic patterns of organ morphogenesis

10

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 11, 2022. ; https://doi.org/10.1101/2022.12.07.519417doi: bioRxiv preprint 

https://paperpile.com/c/UZaHS9/3w9g
https://paperpile.com/c/UZaHS9/01L4
https://paperpile.com/c/UZaHS9/01L4
https://paperpile.com/c/UZaHS9/9LfhK
https://paperpile.com/c/UZaHS9/LhnY
https://doi.org/10.1101/2022.12.07.519417


that occur during embryogenesis: 1. organ expansion, primarily driven by cell growth; 2. organ
shrinkage, or volumetric shrinkage of an organ driven by cell death; 3. organ migration or
movement; and 4. organ fusion by which multiple pieces fuse into a mature organ (Fig. 5g top).
With Spateo, we were able to identify all these patterns: we found that the salivary gland
increases in volume while the amnioserosa decreases and eventually disappears (Fig. 5g
bottom). On the other hand, the CNS migrates while midgut converges from two separate
pieces . Interestingly, morphometric analyses show that although the length of midgut doesn’t
change significantly, the area and volume of midgut dramatically increase over time (Fig. 5h).
Collectively, these fine-grained insights on organ development highlight Spateo’s capabilities to
reconstruct 3D in silico models of embryos and organs for novel 3D differential gene expression
and morphometric analyses, which cannot be properly characterized using static, 2D spatial
data.

Spateo learns morphometric vector fields, and dissects underlying
molecular mechanisms of cell migrational curvature, torsion and
others.
Collecting multiple tissue slices in 3D across several time points allows linkage of dynamic
phenotypes to dynamic gene expression patterns, enabling the prediction of cellular migration in
an organ over time and the association of genes to movement patterns in events such as
morphogenesis. Live imaging provides the opportunity to observe morphogenesis over time at
high resolution (McDole et al., 2018), but it cannot associate complex regulatory programs to
such morphometric changes because imaging can only measure a few genes within single cells
over time. From Spateo’s reconstructed 3D models across different time points, cellular
migration patterns can be approximated by constructing “morphometric vector fields” that map
cells from an earlier time point to a later time point. Furthermore, potential regulatory
mechanisms can be elucidated by leveraging differential geometry analyses of the
reconstructed morphometric vector field and the accompanying transcriptomic data.

Here, we repurposed the RNA velocity vector field learning algorithm originally developed in
Dynamo (Qiu et al., 2022) to learn a vector field of cell migration in 3D physical space. Instead
of the gene expression space, we coupled the morphometric vector field with differential
geometry analyses to identify morphogenesis-related genes in the Drosophila embryo. We first
sampled ~2,000 cells from the E7-9h and E9-10h embryos respectively, then efficiently aligned
the embryos based on the sampled cells to place cells from two time points in the same
coordinate system. As midgut and CNS show the largest migration changes, we selected them
as organs of interest to learn an optimal transport map (see STAR Methods) from the E7-9h
time point to the E9-10h time point (Fig. 6a). We used coordinates from E7-9h cells and optimal
transport couplings (visualized as quivers as in Fig. 6b) to learn a morphometric vector field
using sparseVFC (Ma et al., 2013a). We then used the morphometric vector field to predict the
migration trajectory of each cell, revealing convergence of two distinct midgut components into
one mature organ (see this link: Atlas of Drosophila Development by Volker Hartenstein
(sdbonline.org), Fig. 6a, 6c, and Supplementary Animation 2).
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For RNA velocity vector fields, analytical differential geometry analyses enable discovery of
regulatory mechanisms of cell fate conversion (Qiu et al., 2022). With a 3D morphometric vector
field, differential geometry analyses can be analogously applied to the physical space to reveal
cellular migration properties. Importantly, for 3D morphometric vector fields, 3D curl, curvature,
torsion and others have real physical meanings, and crucial morphogenetic genes can be
identified by significant dependence on these morphometric properties. We thus calculated
velocity, acceleration and curvature vectors, 3D curl, torsion, divergence, and the Jacobian
matrix (STAR Methods, Fig. 6d, Fig. S9) for each cell of the midgut at E7-9h with the learned
morphometric vector field. Cells in the top midgut section move down while cells in the bottom
section migrate upward, revealing a high degree of twists of the midgut on the boundary regions
as revealed by the norm of torsion. We then calculated the norm of all quantities and performed
a generalized linear regression, using the norm to identify several differential geometry quantity
dependent genes (Fig. 6e). For example, we find that tsr, a gene previously known to be
involved in cell morphogenesis and rhabdomere development, is associated with
curvature — that is the degree that a migration path deviates from a straight line, the
curl-related gene Ance may play an important role in the construction of the midgut; and
torsion-related gene awd is a known critical regulator of border cell migration. Applying similar
analyses to study the migration of cells in the central nervous system also reveals key
regulators of CNS migration, including chic, Act5C and elav, crucial for brain development, cell
motility and muscle contraction and control of gene expression in the developing nervous
system (Hilgers et al., 2012), respectively (Fig. S10, Fig. S11, Supplementary Table 3).

Collectively, these results highlight how we can go beyond descriptive 2D spatial analyses to
more dynamical and predictive 3D spatiotemporal modeling with morphometric vector fields,
leading to a paradigm shift in leveraging 3D spatial transcriptomics to reveal regulatory
mechanisms of emergent properties. Lastly, we further demonstrated the general applicability of
Spateo and applied it to analyze datasets from both in-situ profiling-based methods, such as
seqFISH, MERFISH and STARmap, and ex-situ profiling-based methods such as Slide-seq and
seqScope (Supplementary Figure Fig. S12, Fig. S13) to gain biological insights of spatial
domains, niche effects, cell-cell communication and spatial polar-genes.

Discussion
It has been over a decade since the advent of single-cell RNA sequencing transformed
genomics, empowering the development of experimental and analytical methods capable of
profiling and analyzing millions of cells at extraordinary breadth and depth. Now, we are at the
dawn of another new era of spatial genomics which is providing an unprecedented opportunity
to explore transcriptomic measurements with temporal, spatial and in vivo context. Here, we
present Spateo, a powerful framework that bridges the gap between observational analysis of
static samples and holistic biological understanding considerate of 3D space and time. Similar
to other pioneering tools such as Giotto (Dries et al., 2021), stLearn (Pham et al., 2020) and
Squidpy (Palla et al., 2022), Spateo is equipped with a complete suite of common
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preprocessing, visualization and spatial analysis modules, comprising functions for
representation of spatial and imaging data, normalization and transformation, de-batching and
integration, identification of cell types, associated markers and spatially-variable genes, and
informative visualization through interactive plots.

Spateo introduces five major innovations, enabling it to serve as a foundational tool for
advanced spatiotemporal modeling: it (1) identifies continuous spatial domains and expression
archetypes, (2) Organizes spatial domains into discrete layers and columns to reveal
spatially-polar genes, (3) dissects ligand-receptor interactions and predicts
interaction-associated effects on gene expression with a spatially-aware regression model, (4)
reconstructs 3D embryo and organ models coupled to whole-transcriptome measurements, and
(5) learns “morphometric vector fields” that describe cellular migration patterns and facilitate
identification of regulatory mechanisms underlying cell movement and morphogenesis. Spateo’s
capabilities are made possible by its incorporation of diverse concepts from physics and
mathematics, such as partial differential equations, vector fields and differential geometry.

As spatial technologies continue to mature and percolate through biological laboratories, we
foresee an explosion of diverse optimization and application of spatial transcriptomics and for
further development of Spateo. Many single-cell genomics approaches can be translated to
spatial genomics approaches, including single cell multi-omics, RNA metabolic labeling,
Perturb-seq and lineage tracing to enable multi-view, spatiotemporally resolved,
lineage-resolved and perturbation-resolved cell state dynamics in situ. We additionally foresee
opportunities to apply Spateo to understand biological systems in many circumstances, for
example by generating a spatially-resolved cross-species cell atlases and comparing 3D models
of organs between different species to understand the evolutionary emergence of tissue
structures, such as the evolution of the four-chamber heart in mammals from the
single-chamber heart in invertebrates (Olson, 2006). By further optimizing the 3D morphometric
vector field approach, we expect many unique opportunities to directly link regulatory and
functional genes with morphological changes at organ and embryo levels.

Spateo complies with the best practice of software engineering, including a modularized and
extendable infrastructure that allows continuous optimization, future integration (including
dynamo (Qiu et al., 2022), dynast (https://github.com/aristoteleo/dynast-release) and other
frameworks from the Aristotle organization (https://github.com/aristoteleo) and active community
contribution to draw from expertise across the field to build a uniform software ecosystem that
enables dynamic, quantitative and predictive analyses of single cells and spatial
transcriptomics.

Limitations of the Study
First, we expect that Spateo could be further improved by extending 3D alignment to be
compatible with cases where some cells in one slice have no correspondence in the other slice
(a partial alignment) or to allow non-rigid alignment across slices because of tissue deformation
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during sample preparation, as well as to be able to jointly align multiple slices instead of
sequentially aligning, which accumulates errors over each alignment. Second, to manage and
explore the large and expanding datasets generated by spatial transcriptomics, an interesting
prospect would be to draw from Google Earth’s infrastructure to house and interactively
interface with spatially-resolved whole-organ 3D atlases. Third, the spatial RNA velocity and the
morphometric vector field are currently done separately but could be uniformed into a single
learning task to learn reaction-diffusion like spatiotemporal models, and linear regression
models used to identify spatial polar genes could be extended to deal with non-linear
interactions by repurposing optimal transport or graphical neural network based algorithms to
derive communications between signal senders and receivers.
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Main figure titles and legends:

PDF version and high resolution png version of all main and
supplementary figures can be downloaded from:
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Figure 1. Spateo: advanced spatiotemporal modeling framework of single cell
resolution spatial transcriptomics in 3D. a) Spateo is a novel computational
framework tailored for single cell resolution spatial transcriptomics that enables single
cell segmentation based on RNA staining fluorescence or RNA signals, and has general
supports to Stereo-seq, MERFISH, seqFISH, STARMap, Nanostring, and others. b).
Spateo identifies continuous spatial domains, dissects spatial cell type distribution,
discovers gene expression archetypes and characterizes spatial polarity genes by
digitizing spatial layers or columns. c). Spateo models cell-cell communication and
spatial niches via a general spatial lag regression approach to detect significant
ligand-receptor interactions, unveil signal cascade and predict spatial niche effects. d).
Spateo enables spatial RNA velocity vector field analyses to reveal spatial expression
kinetics and regulations. e). Spateo reconstructs 3D models of organs and embryos,
builds continuous expression models using a neural network, discovers various
morphometric modes and performs sophisticated morphometric analyses. f). Spateo
learns morphometric vector fields, predicts cell migration paths, and relates
morphometric properties to the underlying regulatory genes.
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Figure 2. Spateo harmonizes spatial domain and cell type characterization, and
unveils expression polarity across spatial layers / columns. a). Spatial domains
and cell types of the mouse adult coronal hemibrain section. Left: the spatial domains
identified by the unsupervised SCC method at bin 60 (30 um2) resolution. Right: cell
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types annotated based on the clustering result from the segmented cells. Cell shape
corresponds to the cell segmentation. The legend indicates the mapping from each
color to the corresponding spatial domain or cell type. Same as in Panels b, c, e, and f.
AMY: Amygdalar nucleus; CA: Cornu ammonis; CTXsp: Cortical subplate; DG: Dentate
gyrus; DORpm: Thalamus, polymodal association cortex related; DORsm: Thalamus,
sensory-motor cortex related; HIP & CTXpl L1: Hippocampus and Cortical plate layer 1;
HY: Hypothalamus; OLF: Olfactory area; PAL: Pallidum; RT: Reticular nucleus. STRd:
Striatum dorsal region; VS: Ventricular systems. b). Magnification inlet showing spatial
composition of different cell types within different neuronal layers in the regions squared
in Panel a. c). Left: the spatial domain contribution of each cell type. Right: marker
expression for each cell type. d). Identified archetypes (top), and corresponding
example marker (bottom) gene expression in space. e). Spatial co-localization
relationship between different cell types. Left: Pairwise connectivity plot of identified cell
types. Top triangle: spatial connectivity; bottom triangle: expression connectivity. Box
size corresponds to the strength of connectivity. Right: The percentage of neighbors
from OPCs belonging to specific cell types as a function of neighbor size. The shade of
each line corresponds to the 90% confidence interval. f). Heatmap of spatial connection
and gene expression similarity. Left and top axes display the identified cell types of
axolotl brain at 2-DPI. Top-left triangle: cell-type colocalization inferred using actual
spatial proximity. Bottom-right triangle: cell-type transcriptomic similarity. Box sizes
correspond to the number of spatial colocalization or strength of expression similarity for
the top-left and bottom-right triangles, respectively. g). The schematic of the Jacobi
method (Saad, 2003), showing that the potential of the central grid point is the
equal-weighted average of four neighborhoods. h). The schematic of the solution of
domain digitization boundary problem for irregular bounded domains. See STAR
Methods for further details. i). The schematic of the solution of domain digitization
boundary problem for regular/smooth bounded domains. See STAR Methods for further
details. j). Digitization of the neuronal layers (L2-L6) into different layers and columns.
Left: the select spatial domain in gray color and example borderlines showing the result
of region digitization. Right: the assignment of layers and columns. k). Example genes
showing distinct layer and column dependent (or polarity-like) expression. Expression
values are firstly density normalized using the kdeplot function from Seaborn(Waskom,
2021). The shade of each line corresponds to the 90% confidence interval.

Celltype abbreviations:
(Domain) neuron: Domain-enriched neuron subtypes; AST: Astrocyte; COP:
Differentiation-committed oligodendrocyte precursors; EX (Domain): Excitatory neuron
or Domain-enriched subtypes; GN DG: Granule cells enriched in dentate gyrus; IN
(Gene+): Inhibitory neuron or Gene-expressed subtypes; MICRO: Microglia; MSN:
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Medium spiny neuron; VLMC: vascular and leptomeningeal cell; OLIG:
Oligodendrocyte; OPC: Oligodendrocyte precursor
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Supplementary Figure 1, related to Fig. 2. Spateo unravels the relationship
between spatial domains and cell types, and identifies polarity genes and their
enriched pathways. a). Various clustering algorithms reveal similar spatial domains of
mouse adult coronal hemibrain section. First): Results of SCC (spatially constrained
clustering) and Allen brain map reference; Second): Results of Louvain clustering;
Third) Results of SpaGCN. All methods are spatially aware, except the first one.
Fourth) Running time and distribution of spatial continuity of the resultant clusters for
each method. Moran’s I (a measure of spatial autocorrelation) is used to quantify the
spatial continuity. b). Robustness of SCC under a broad range of spatial or expression
neighbors. Color of the heatmap corresponds to the adjusted rand index (ARI) between
the clustering result from each setting and the default setting (30 expression neighbors
and 8 spatial neighbors). c). Spateo leverages high spatial resolution of Stereo-seq to
perform RNA signal based single cell segmentation. Left): Unspliced RNA intensity
(total UMIs in each DNA nanoball); Right): Resultant single cell mask after processing
unspliced RNA mask. d). Distribution of the number of genes and total UMI counts per
segmented cell. e). The spatial distribution of each cell type in different spatial domains.
Colors correspond to the proportion of a particular cell type that is distributed into a
particular spatial domain. Columns are ordered based on the most enriched spatial
domain of each cell type. f). Top enriched GO (gene ontology) BP (biological process)
terms associated with gene expression archetypes (a group of genes that show
consistent gene expression patterns across cells, see STAR Methods). Archetypes are
ordered based on the specificity to the top enriched terms on the row. g-h). Moran’s I
statistics stratifies the spatial distribution of distinct cell types. g): barplot of the Moran’s I
score for each cell type. Moran’s I is calculated based on the binary vector (close to 1 if
the cell comes from a particular cell type, close to 0 otherwise) of each cell type across
the space. h): Example cell types with high (GN DG), middle (IN Pvalb+) and low
(MICRO) Moran’s I score, representing cells with high spatial enrichment, adequate
spatial enrichment and uniform spatial distribution. i) Spatial colocalization of OLIG and
OPC. The black lines are the identified borders of the spatial domains. See all
significant cell pairs in Fig. 2f. j). Left: Scatterplot of the fraction of expressed cells and
-log10(P-value) based on the generalized linear regression analyses along spatial
domain layers or columns (See STAR Methods). Highlighted are domain column
specific genes, whose spatial expression is visualized in the right.
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Figure 3. Spateo models intercellular communication and estimates associations
with ligand-receptor interaction events. a) Scheme of Spateo’s cell-cell
communication and microenvironment modeling core. From a spatial transcriptomic
dataset with single cell resolution that has been annotated with categorical group labels,
Spateo implements cell-cell interaction prediction based on ligand-receptor products
conditioned on spatial proximity (left). Spateo’s regression suite enables estimation of
ligand effects on expression of receptors and other molecules of interest using
spatially-lagged (considering dependent variable magnitude in neighboring cells)
general log-linear modeling (middle bottom). Spateo is also able to estimate the impact
of niche factors (right box, top row) and cell type-specific ligand-receptor interactions
(right box, bottom row) on expression of molecules of interest with spatially-aware
generalized linear modeling that enables selection of multiple non-normal distribution
assumptions. b) Cell types of cross-section of both hemispheres of the axolotl
telencephalon, two days post-injury where only one hemisphere is subjected to injury.
reaEGC: reactive ependymoglial cell; sfrpEGC: SFRP+ ependymoglial cell; wntEGC:
WNT+ ependymoglial cell; WSN: wound-stimulated neuron; mpEX: medial pallium
excitatory neuron; dpEX: dorsal pallium excitatory neuron; nptxEX: NPTX+ lateral
pallium excitatory neuron; VLMC: vascular leptomeningeal cell; MCG: microglia. Cell
type labels used here and in all following figures. c) Spatial distribution of reaEGCs and
WSNs (left) and spatial distribution of the same cell types at only the locations where
the two cell types are assumed to be in range for interactions, as defined by the
nearest-neighbors graph (right). d) Most significant interactions on both injured and
uninjured sides of the telencephalic hemisphere. From all interactions involving
wntEGC, nptxEX, mpEX and dpEX in the uninjured side and reaEGC, WSN, mpEX,
dpEX, MCG in the injured side, those in which the average ligand-receptor product is
not >0.1 for at least one cell type pair are filtered to arrive at this subset.
Ligand-receptor pair on left axis, sender and receiver cell types on bottom and top axes,
respectively, corrected p-value denoted by circle size, ligand-receptor product by circle
color, and significance by an open or filled circle. e) All identified nonzero interactions
resulting from paired testing of WSN-produced ligands and reaEGC receptors, using the
method described in subsection d. f) Subset of identified nonzero interactions resulting
from paired testing of reaEGC-produced ligands and WSN receptors, using the method
described in subsection d. g) Expression patterns for PTN, TNC and SDC1. These
ligands (PTN, TNC) and the cognate receptor (SDC1) colocalize along the
reaEGC-WSN interface. h) For reaEGC ligands and WSN receptors from f,
significantly-enriched gene ontology (GO) biological processes (BP). i) From outputs of
the model labeled I in the right box of panel a, number of genes that are both
differentially expressed and positively associated with proximity of a given pair of cell
types (labeled as “differentially upregulated”), with neighboring (sender) cell types along
the left axis and receiver (refer to annotation “A” in the “Microenvironment Modeling”
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box in panel a) cell types along the bottom axis, with differential expression assessed by
significance testing. Gene set contains all genes with nonzero expression in >5% of
cells in addition to Moran’s I coefficient that is significant and >0.4, with expression
patterns for example genes GFAP and CBLN2 in the left subpanel. The same gene set
is used for Fig. S3. j) From outputs of the model labeled II in the right box of panel a,
estimated effect sizes when cell type-specific patterns (specifically, reaEGC-WSN and
WSN-reaEGC specific patterns) of ligand-receptor interaction are used to predict the
expression patterns of select downstream genes. A prior knowledge network database
was used to choose genes downstream of ERBB3 and SDC1 (see SLICE model in
STAR Methods).
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Supplementary figure 2, related to Fig. 3. Temporal progression of the post-injury
response in the axolotl telencephalon. a) Schematic diagram of sample collection
and spatial visualization of cell types identified in the axolotl telencephalon sections by
Stereo-seq at different stages of regeneration. Cells are colored using the same color
legend in panel b. b) UMAP visualization of the segmented cells from 2 days post-injury
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(2DPI). c) Spatial visualization of the injured area on the 2 DPI section. d) Bar graph
showing the fold change of the cell ratio in the injured hemisphere compared to the
uninjured hemisphere at 2DPI. Significantly increased (WSN, reaEGC, and MCG) or
decreased (wntEGC, ribEGC) cell types in the injured hemisphere are annotated with
red and blue text, respectively. e) The use of spatial proximity reduces the number of
false positive interactions and increases specificity on the axolotl brain regeneration
dataset. Left and top axes display the identified cell types of axolotl brain at 2-DPI.
Top-left triangle: colocalization inferred using actual spatial proximity. Bottom-right
triangle: total CCI (cell-cell interaction) number inferred by CellPhoneDB (Efremova et
al., 2020). Box sizes correspond to the number of interactions or strength of connectivity
for the top-left and bottom-right triangles, respectively. The color scale in the
bottom-right triangle has the same meaning as the box size. f) Boxplot shows ligand or
receptor expression difference in spatial neighboring and not neighboring reaEGCs and
WSNs. g) Line graphs showing the fold change of the cell ratio across time for the
injured hemisphere, up to 60 DPI. h) Dotplot shows the interaction between the spatial
regions corresponding to the two cell types occurred during the regeneration of nptxEX
and dpEX, during the reprogramming process. Upper: The most significant interactions
throughout the process of nptxEX regeneration. At 30 DPI and 60 DPI, the significant
ligand-receptor pairs include NPTX1-NPTXR appeared also when cells were uninjured,
but other times have different interaction signatures, e.g.: 2DPI-10DPI: PTN-SDC1,
L1CAM-ERBB3, 15DPI-20DPI: FGF11-FGFR4, JAG2-NOTCH3, PTGS2-CAV1. Lower:
Same as above but for dpEX regeneration. At 60 DPI, the significant ligand-receptor
pairs include APP-GPC1 appeared also when cells were uninjured, but other times have
different interaction signatures, e.g.: 2DPI-5DPI: GNAI2-P2PY12 and
INHBA-ACVR1A/B, 15DPI: LGALS1-PTPRC, 20DPI: PTGS1-CAV1.
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Supplementary figure 3, related to Fig. 3. Estimated effect of niche composition
on expression in specific receiving cell types. a) Construction of the design matrix
for Spateo’s niche model, in which the cell type neighborhood of each cell is encoded
into a feature array for regression on the corresponding gene expression vector.
Parameters from the regression are used to estimate the relative strength of the
association between a given cell type pair and gene expression. b) Heatmap of sender
cell types’ effects on selected genes in reaEGC. For each gene, effect sizes correspond
to a subset of coefficients of the spatial niche regression, each coefficient describing the
case where reaEGC is the receiver cell type and the given cell type (bottom axis) is
present in the local neighborhood of a reaEGC. Genes labeled with red markers are
visualized in panel c, and genes labeled with blue markers are visualized in panel d. c)
Heatmap of reaEGC’s effects on selected genes in different receiver cell types. For
each gene, effect sizes correspond to a subset of coefficients of the spatial niche
regression, each coefficient describing the case where a given cell type (bottom axis) is
the receiver cell type and reaEGC is present in the local neighborhood of that cell as the
sender cell type. d) Spatial distribution of reaEGCs and WSNs (upper left) and
expression patterns for ATF3, VIM and FZD2, validating enrichment along the
WSN-reaEGC interface corresponding to the estimated positive effect size. e) Spatial
distribution of dpEX, mpEX and reaEGCs (upper left) and expression patterns for
HMOX1, FABP7 and MT3, validating relative depletion along the reaEGC-mpEX/dpEX
interface corresponding to the estimated negative effect size. f) From outputs of the
model labeled I in the right box of panel a, number of genes that are differentially
expressed (either positively or negatively) in association with proximity of a given pair of
cell types. g) From outputs of the model labeled I in the right box of panel a, number of
genes that are both differentially expressed and negatively associated with proximity of
a given pair of cell types (labeled as “differentially downregulated”).
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Supplementary figure 4, related to Fig. 3. Characterization of niche effects on
neuronal regeneration signatures. a) Expression of gene sets associated with glial
differentiation and axonogenesis, Wnt/Notch signaling pathways and ribosomal
translation in reaEGC, sfrpEGC, wntEGC, microglia (MCG) and mpEX, colored by mean
expression and with dot sizes corresponding to the proportion of cells with nonzero
expression. b) Number of differentially expressed genes (assessed by significance
testing of coefficients) associated with proximity of a given pair of cell types, with
neighboring (sender) cell types along the left axis and receiver (refer to annotation “A” in
the “Microenvironment Modeling” panel in Fig. 3a) cells along the bottom axis. c)
Heatmap of sender cell types’ effects on selected genes in reaEGC. For each gene,
effect sizes correspond to a subset of coefficients of the spatial niche regression, each
coefficient describing the case where reaEGC is the receiver cell type and the given cell
type (bottom axis) is present in the local neighborhood of a reaEGC. Elements of
interest for panel f are highlighted. d) From left to right, the estimated effect, with
respect to both coefficient and -log10(q-values), of sfrpEGC, wntEGC and mpEX on
expression of each gene in reaEGC. The patterns of differential expression are slightly
different across sender cell types, with other radial glial cells having a greater number of
positive associations compared to mature excitatory neurons. e) Spatial distribution of
reaEGCs and sfrpEGC. f) reaEGC-specific expression pattern for SFRP1 (left) and
PLPP3 (right) in conjunction with spatial distribution of sfrpEGCs, showing the tendency
for sfrpEGCs to colocalize with expression hotspots in reaEGCs for two genes sfrpEGC
is predicted to have positive effect on. g) Subset of identified nonzero interactions
resulting from paired testing of sfrpEGC-produced ligands and reaEGC receptors as
described in the left box of Fig. 3a, representing potential mechanisms that may result
in the observed differential expression patterns.

31

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 11, 2022. ; https://doi.org/10.1101/2022.12.07.519417doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.07.519417


Supplementary figure 5, related to Fig. 3. Characterization of niche effects on
reaEGCs by regressing on many genes and selecting subset of interest. a)
Heatmap of sender cell types’ effects on selected genes in reaEGC. For each gene,
effect sizes correspond to a subset of coefficients of the spatial niche regression, each
coefficient describing the case where reaEGC is the receiver cell type and the given cell
type (bottom axis) is present in the local neighborhood of a reaEGC. b) From left to
right, the estimated effect, with respect to both coefficient and -log10(q-values), of dpEX,
VLMC and reaEGC (assessing homologous cell pairs) on expression of each gene in
reaEGC. The patterns of differential expression are slightly different across sender cell
types. c) reaEGC-specific expression pattern for CAMK2D, MEGF11, SLITRK1,
SHISA6, STMN1 and TGFB1 in conjunction with spatial distribution of dpEX and mpEX
(CAMK2D, MEGF11, SLITRK1), mpEX alone (SHISA6, STMN1) and WSN (TGFB1).
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Supplementary figure 6, related to Fig. 3. Characterizing the effect of
niche-specific, cell type-specific ligand-receptor interactions on expression in
specific receiving cell types. a) Significance of coefficients for the regression of each
combination of cell type pairs, ligands and receptors on downstream targets, subsetted
to features containing reaEGC or WSN. Elements are colored if significant, and
uncolored if not. b) The proportion of the total number of cells with nonzero expression
of PTN, TNC and SDC1 for each labeled cell type. c) Barplot of the number of cells
labeled for each specific cell type with nonzero expression of PTN, TNC and SDC1. d)
Estimated effect sizes when cell type-specific patterns (specifically, reaEGC-reaEGC
and WSN-WSN specific patterns) of ligand-receptor interaction are used to predict the
expression patterns of select genes. Genes chosen by using a prior knowledge network
database(Gillespie et al., 2022; Hu et al., 2019; Kanehisa and Goto, 2000; Shao et al.,
2021) to choose genes downstream of ERBB3 and SDC1 (see SLICE model in STAR
Methods). e) Same as in panel d, but for VLMC-reaEGC and VLMC-WSN specific
patterns. f) Coefficient of determination and Spearman correlation for linear fits of cell
type-specific ligand-receptor products and gene expression for select genes (ITGB3,
ITGAV, CALM1, PIK3R3 from left to right). Cell type-specific ligand-receptor products
are computed by subsetting to receiver cells that both neighbor the indicated sender cell
and express the indicated receptor, resulting in between 8-15 receiver cells. The cell
type-specific ligand-receptor product is min-max scaled. 95% prediction intervals and
95% confidence intervals are superimposed in shades of blue, with 95% confidence
intervals corresponding to the darker shade.
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Fig. 4. RNA velocity vector field analyses of spatially resolved atlas of cardiac
cells during mouse organogenesis. a). Spatial geometry plots (geometry here refers
to the cell shape, identified through cell segmentation) of distinct cell types of the heart
on typical embryo slices from E9.5 to E16.5, profiled with Stereo-seq, from the MOSTA
dataset (Chen et al., 2022). CM/SMCs: cardiomyocytes and smooth muscle cells; CMP:
cardiomyocyte progenitor cells; FBs/CCs: fibroblast, epicardial/endocardial cells;
FBs/CM: fibroblast and cardiomyocyte cells; Mac: macrophage; RV-CM: right ventricular
cardiomyocytes; SMCs: smooth muscle cells; aCM: atrial cardiomycotes; vCM:
ventricular cardiomyocytes; vCM/endo: ventricular cardiomyocytes and endothelial cells.
Color legend of cell type identities is shared between panel a and b. b). UMAP (Uniform
Manifold Approximation and Projection for Dimension Reduction) plot of different
cardiac cell types from the entire heart cell atlas. c). Dotplot of cell-type specific
markers. d). RNA velocity streamline plot of cardiomyocyte (CM) maturation, with cells
colored by the CM subpopulation identities on the left or expression of CM marker, Ttn,
on the right. e). RNA Jacobian analyses of the cardiomyocyte maturation. From left to
right: i). The Jacobian from cardiac TF Tbx5 to another cardiac TF Gata4 reveals broad
activation pattern across various CM maturation states. Cells are shown in the UMAP
space and only CM related cells are selected for this analysis; ii). The spatial geometry
plot reveals this activation is restricted to CM cells but not the surrounding epicardial
cells. All cells, excepted those didn’t made to RNA velocity vector field analyses, from
the typical E16.5 Stereo-seq slice (also shown in panel a) are shown, same as for the
spatial plots in the panel f; iii). Regulation from Tbx5 to Mef2c has a reversal spatial
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pattern to that from Tbx5 to Gata4. f). In silico perturbation prediction of Tbx5 knockout.
Top): Predicted RNA velocity streamline plot after knocking down Tbx5, a key CM
maturation regulator. Bottom left): Spatial geometry plot of the predicted response of
Gata4 after knocking out its upstream regulator Tbx5. Bottom right): Spatial plot of the
predicted response of Ttn after knocking out its indirect regulator Tbx5. g). Same as in
panel d but for the maturation of fibroblast cells from epicardial cells. Expression of
three known fibroblast marker Postn, Fbln2, and Colfa1 in the UMAP space are shown,
with RNA velocity streamline overlaid on the top. h) RNA velocity vector field analyses
of the fibroblast maturation. From left to right: i). The Jacobian from epicardial TF Tcf21
to fibroblast marker Col1a1 reveals a broad activation pattern across various fibroblast
maturation states. Cells are shown in the UMAP space and only fibroblast related cells
are shown; ii). Scatterplot of the predicted response of Col1a1 after knocking down the
epicardial TF Tcf21. iii) Spatial geometry plot of the predicted response of Col1a1 after
knocking out Tcf21. All cells, excepted those didn’t made to RNA velocity vector field
analyses, from the typical E15.5 Stereo-seq slice (also shown in panel a) are shown.
Scale bars in panels a, e, f, and h indicates the physical scale of the spatial plots. Cell
segmentations are used to draw the cell shape in each spatial plot.
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Supplementary figure 7, related to Fig. 4. RNA velocity analyses of spatially
resolved heart cell atlas during mouse organogenesis. a). Basic statistics (number
of genes, nGenes, and number of total UMI counts, nCounts), and the fraction of
unspliced and spliced RNAs of cardiac cells of the heart cell atlas. b). Spatial gene
expression distribution of cardiac cell marker, Myl7, across the entire embryo and
extracted heart region at E16.5. c). Gene expression of regional specific cardiomyocyte
markers, Nppa and Ckm across all cardiac cells in the UMAP space. d). Spatial gene
expression of Nppa and Ckm on the heart region of the typical E16.5 Stereo-seq slice
(also shown in panel Fig. 4a), same as for the spatial plots in the panel e. e) Spatial
RNA Jacobian of the regulation from Tbx5 to itself or the regulation from Tbx20 to
Mef2c.
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Fig 5: In silico 3D reconstruction of continuous Drosophila embryos and organs
models reveal axis, organ-dependent genes, spatiotemporal organogenesis
modes and morphometric kinetics. a). Workflow of 3D tissue/organ/embryo
reconstruction and downstream analyses. b). A-P (anterior-posterior) or D-V
(dorsal-ventral) axis of the embryo (left) and significant A-P dependent gene, Rho1’s
expression pattern on the the surface (middle) or along the D-V axis (right), shown as
the A-P plane, uniformly sliced from the in silico embryo model along the D-V axis.
Gene expression in the middle and right subpanels of panel b/d are retrieved from the
smoothed 3D gene expression model learned with the deep learning model (see STAR
Methods) c). GO BP (biological process) enrichment analyses of significant D-V axis
variable genes. Scatter plot of combine score vs. adjusted p-value of enriched GO
terms of all the detected significant D-V axis variable genes. d). Same as in b, but for
the principal curve of the central nervous system (CNS) and the associated significant
CNS principal curve dependent gene, Rac1.e). Same as the top but for the significant
principal curve of CNS backbone dependent genes. Key terms are highlighted. f)
Similar to d, but for the cell density of CNS in the middle and right subpanels. For the
left panel, the CNS tissue level mesh is embedded in the whole-body embryo mesh. g).
Four typical organogenesis modes (migration: organs migrate during embryogenesis;
shrinkage: organs shrink during embryogenesis; expansion: organs expand during
embryogenesis; convergence: multiple disconnected organ primordia converge into a
mature organ) and associated example organ during the Drosophila embryogenesis
from E7-9h to E16-18h. h). Morphometric analyses of different organs over time during
Drosophila embryogenesis. Top: Lengths of different organs (the length is based on the
fitted principal curve of the organ) over time; Middle: same as the above but for the
surface area; Bottom: same as above but for the volume.
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Supplementary Figure 8, related to Figure 5: 3D tissue/embryo reconstruction
enables discovering spatial axis and tissue backbone dependent genes, and
quantifying tissue-level cell-cell interactions. a). Scatterplots of aligned cells on
each Stereo-seq slice. The color corresponds to the annotated tissue type. b). 3D
surface (left) and computational slicing (right) visualization of the smoothed expression
of A-P axis-dependent gene ab imputed with a neural net. c-e). Enriched GO biological
pathway terms of significant A-P, D-V and CNS backbone dependent genes. f). Tissue
interaction plot based on spatial proximity (top-left triangle) and inference by
CellPhoneDB (bottom-right triangle). Box size corresponds to the strength of cell-cell
interactions based on spatial colocalization or the number of CellPhoneDB predictions.
g). 3D spatial distribution of cells from CNS and muscle cells. h). Same as in g, but
pruned for CNS and muscle cells that are neighboring one another. i). Identified
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significant ligand and receptor pairs between sending muscle cells and receiver CNS
cells.
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Fig 6: Learning morphometric vector field of Drosophila embryogenesis and
unveiling molecular mechanism of morphogenesis via analytical differential
geometry analyses. a). The alignment between cells of the Drosophila midgut from
E7-9h to those from E9-10h. b). Quivers of the surface of the midgut predicted by the
morphometric vector field learned with the cell alignment defined in panel a). Quivers
are sampled uniformly across the surface. Color of the quiver corresponds to the z
component of the velocity vector. c). Same as the b, but with the predicted trajectories
of sample points, visualized as streamlines. d). Estimated morphogenic curvature, curl,
torsion of the reconstructed morphometric vector field. The cell and streamline are
colored by the corresponding norm of each quantity. Definition of each quantity is
provided. Note that both curvature and curl are vectors of the axis, while torsion
is a 3 x 3 matrix for each sample point. e). Top example gene that is significantly
associated with each differential geometry quantity. Short description of the function of
each gene that is related to midgut development, or Drosophila morphogenesis in
general is provided.
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Supplementary Figure 9, related to Figure 6: Spatial acceleration (a), divergence
(b), and Jacobian (c) of the morphometric vector field of Drosophila midgut
morphogenesis.
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Supplementary Figure 10, related to Figure 6: Morphometric vector field analysis
of Drosophila central nervous system (CNS) morphogenesis. a). The alignment
between cells of Drosophila CNS from E7-9h to those from E9-10h. b). Quivers of the
surface of CNS predicted by the morphometric vector field learned with the cell
alignment defined in panel a). Quivers are sampled uniformly across the surface. Color
of the quiver corresponds to the z component of the velocity vector. c). Same as the b,
but with the predicted trajectories of sample points, visualized as streamlines. d).
Estimated morphogenic curvature, curl, torsion of the reconstructed morphometric
vector field. The cell and streamline are colored by the corresponding norm of each
quantity. Definition of each quantity is provided. Note that both curvature and curl are
vectors of the axis, while torsion is a 3 x 3 matrix for each sample point. e). Top
example gene that is significantly associated with each differential geometry quantity.
Short description of the function of each gene that is related to CNS development, or
Drosophila morphogenesis in general is provided.
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Supplementary Figure 11, related to Figure 6: Spatial acceleration (a), divergence
(b), and Jacobian (c) of the morphometric vector field of Drosophila central
nervous system (CNS) morphogenesis.
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Supplementary Figure 12: Spateo facilitates analysis of data collected with in
situ-hybridization based methods. For in situ hybridization methods, cells can be
identified from spot-based readouts using Spateo’s cell segmentation method, or other
methods such as Ilastik(Berg et al., 2019) (as was used for the seqFISH and STARmap
datasets here). a) seqFISH dataset collected from a mouse embryo in the somite
stage. Cells are colored by tissue type, with progenitor cells that will become certain
tissue types also included. b) Heatmap of sender cell types’ effects on selected genes
in the developing spinal cord. For each gene, effect sizes correspond to a subset of
coefficients of a spatial niche regression, each coefficient describing the case where
spinal cord cells are the receiver cell and the given cell type (bottom axis) is present in
the local neighborhood of a spinal cord cell. Gene set contains all genes with Moran’s I
coefficient that is significant (with adjusted p-value threshold set to 0.05) and >0.1, with
expression patterns for example genes Msx1, Fgf15 and Fgf3 in the right subpanel. c)
MERFISH dataset collected from the posterior preoptic region of the mouse
hypothalamus. Cells are colored by neuronal cell type. d) Expression of select gene
expression archetypes (representing hierarchical clusterings of genes) in space. e)
STARmap dataset collected from the mouse medial prefrontal cortex. Cells are colored
by neuronal cell type. f) Digitization of cortical layers (L2-L4) by solving the layer-wise
potential equation. Cells are colored by the value returned from this solution (electric
potential from the equation), representative of their digitized layer number.
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Supplementary Figure 13: Spateo facilitates analysis of data collected with ex
situ-sequencing based methods. a) Slide-seqV2 dataset collected from the mouse
hippocampus and surrounding section of brain. Cells colored by the primary cell type
inferred by RCTD(Cable et al., 2022a). Refer to panel b) for cell type labels and
corresponding colors. b) Quantification of spatial colocalization between different cell
types. Top triangle: spatial connectivity; bottom triangle: expression connectivity. Spatial
connectivity is computed based on weighted spatial distances and cell type labels and
normalized by number of cells, and expression connectivity is computed based on
weighted gene expression space distances. Box size corresponds to the strength of
connectivity. Some cell types are pre-filtered on the basis of low total cell count. c)
Spatial domains identified by the unsupervised SCC method at bin 10 resolution. d)
Digitization of the CA3 region of the hippocampus by solving the layer-wise potential
equation. Cells are colored by the value returned from this solution (electric potential
from the equation), representative of their digitized layer numbers. e) Most significant
ligand-receptor interactions between different sending and receiving cell types in the
Slide-seqV2 data. All interactions involve combinations of interneurons, ependymal cells
and choroid plexus cells. Ligand-receptor pair on left axis, sender and receiver cell
types on bottom and top axes, respectively, corrected p-value denoted by circle size,
ligand-receptor product by circle color, and significance by an open or filled circle. f)
From the Seq-Scope dataset collected from the mouse liver, the gene expression
distribution of Alb over space, representing an example of a gene with high spatial
autocorrelation, determined by Moran’s I score >0.1 and q-value < 0.05. g) Learned
principal axes of the 2D Seq-Scope dataset. h) Enriched GO biological pathway terms
of significant vertical axis-dependent genes, determined using a linear regression.
Combined score computed by the product of the log-transformed p-value and the
z-score for the GO term.
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Supplementary Tables and Animations

Supplementary table 1: The table that compares Spateo with existing major spatial
transcriptomics dataset analyses toolkits, including Squidpy, stLearn, Giotto, Seurat and StUtility
in terms of package focus, infrastructure, spatial statistics, image analysis, visualization,
integration, advanced spatial and temporal analysis and others.

Supplementary table 2: The table of the results of A-P (anterior-posterior) / D-V (dorsal-ventral)
axis dependent genes, associated GO (gene ontology) enrichment and 3D cell-cell interactions
analyses. There are seven sheets in total, namely: 1). Results of A-P axis dependent differential
expression analysis; 2). Results of GO enrichment analysis of the A-P axis dependent genes;
3). Same as 1) but for D-V axis; 4). Same as 2) but D-V axis dependent genes; 5). Same as 1)
but for CNS (central nervous systems) backbone (see STAR Methhods); 6). Same as 2) but for
CNS backbone dependent genes; 7). Top identified ligand-receptor pairs between muscle and
CNS cells.

Supplementary table 3: The table of the results of morphometric vector field differential
geometry analyses (see STAR Methods). There are six sheets in total, namely: 1). Significant
curvature dependent genes in Drosophila midgut; 2). Significant curl associated genes in
Drosophila midgut; 3). Significant torsion associated genes in Drosophila midgut; 4). Significant
curvature associated genes in Drosophila CNS; 5). Significant curl dependent genes in
Drosophila CNS; 6); Significant torsion dependent genes in Drosophila CNS.

Supplementary animation 1: Animation showing the reconstructed 3D models of embryo and
various organs, including CNS, amnioserosa, embryo shell, epidemis, midgut, muscle and
salivary gland in 3D space, rotating firstly along the D-V axis and then the A-P axis.

Supplementary animation 2: Animation of the the predicted cell migration paths of E7-9h
Drosophila midgut cells. Animation is repeated with cells colored with the norm of acceleration,
divergence, curvature, curl, torsion sequentially at each repeat.

Supplementary animation 3: Same as in supplementary animation 2 but for the CNS cells.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Biological samples
Adult mouse brain This paper N/A
Drosophila melanogaster w1118 Tsinghua Fly Center

Chemicals, peptides, and recombinant proteins
Exonuclease I NEB Cat# M0293L
Exonuclease I buffer NEB Cat# M0293L
AMPURE XP beads Beckman Coulter Cat# A63881

Agar Vetec Cat# V900500
Propionic acid Aladdin Cat# P110444
Phosphate acid LingFeng, Shanghai -
Bromophenol blue Macklin Cat# B802656
Tissue-Teck OCT Sakura Cat# 4583
Pepsin Sigma Cat# P7000
20X Saline-sodium citrate (SSC) Thermo Cat# AM9770
InvitrogenTM Qubit ssDNA HS Reagent Thermo Cat#Q10212
KAPA HiFi Hotstart Ready Mix Roche KK2602

Critical commercial assays
Cornmeal-sucrose-agar Drosophila media Hopebio Cat# HB8590
Drosophila incubator Laifu Cat#

PGX-280A-3H
Cryostat Leica Cat# CM1950

Deposited data
Will be released once the paper published.

Oligonucleotides
Stereo-seq-TSO:
CTGCTGACGTACTGAGAGGC/rG//rG//iXNA_G/

This paper N/A

cDNA PCR primer:
CTGCTGACGTACTGAGAGGC

This paper N/A

Stereo-seq-library-F:
/5phos/CTGCTGACGTACTGAGAGG*C*A

This paper N/A

Stereo-seq-library-R:
GAGACGTTCTCGACTCAGCAGA

This paper N/A

Stereo-seq-library-splint-oligo:
GTACGTCAGCAGGAGACGTTCTCG

This paper N/A
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Recombinant DNA
N.A

Software and algorithms
Spateo (version: 1.0) This paper https://github.com/ari

stoteleo/spateo-relea
se

dynamo (version: 1.1.0) This paper https://github.com/ari
stoteleo/dynamo-rele
ase

Other

RESOURCE AVAILABILITY
Lead contact
Further information and requests for resources and reagents should be directed to and will be
fulfilled by the Lead Contact Xiaojie Qiu (xqiu@wi.mit.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The following public Stereo-seq datasets are used in this study: the axolotl brain regeneration
dataset (Wei et al., 2022), MOSTA datasets (Chen et al., 2022), mouse hippocampus Slide-seq
V2 dataset (Stickels et al., 2021) (https://singlecell.broadinstitute.org/single_cell/study/SCP815),
mouse embryo seqFISH dataset (Lohoff et al., 2022)
(https://crukci.shinyapps.io/SpatialMouseAtlas/), mouse hypothalamus dataset (Moffitt et al.,
2018) (https://datadryad.org/stash/dataset/doi:10.5061/dryad.8t8s248), mouse cortex STARmap
dataset (Wang et al., 2018) and mouse liver seqScope dataset (Xi et al., 2022)). E14-16h and
E16-18h Drosophila 3D Stereo-seq datasets are downloaded from the Flysta3D database
https://db.cngb.org/stomics/flysta3d/download.html (Wang et al., 2022).

Mouse adult coronal hemibrain and continuous slicing profiling of Drosophila embryogenesis
datasets are newly generated for this study. Processed datasets are provided within Spateo and
the raw data will be released upon the publication of this study.
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Spateo (version: 1.0) is implemented as a Python package and is available through GitHub
(https://github.com/aristoteleo/spateo-release). Notebooks, tutorials for reproducing all figures in
this study, and tutorials of Spateo usage cases are also available through GitHub
(https://github.com/aristoteleo/Spateo-notebooks,
https://github.com/aristoteleo/Spateo-tutorials).

METHOD DETAILS

Spatially-constrained clustering (SCC)

While conventional clustering analyses of transcriptomic data identify cell type identities and
reveal the primary sources of cellular heterogeneity, they are unable to identify regions of cells
within a tissue that share transcriptomic properties and correspond to anatomical domains.
Spatially-constrained clustering (SCC) jointly models the transcriptomic and spatial information

by firstly constructing two k-nearest neighbor graphs, the expression graph based on

distance in transcriptomic space and the spatial graph based on distance in the physical

space. In the example in Figure 2, to construct , the Stereo-seq data is gridded into 50 *
50 DNB or DNA Nanoballs square lattices (the grids formed by the DNA Nanoballs on the
Stereo-seq chip), termed bin 50, or lower resolutions to merge multiple cells (or part of cells) into
distinct spatial units. Assuming that physically adjacent cells tend to share similar expression
profiles (Nitzan et al., 2019), this binning strategy smooths gene expression which is directly
beneficial for identifying spatially continuous tissue domains. The binned data is then
normalized for sequencing depth, followed by log-transformation for variance stabilization,
ensuring the genes with high expression after log-normalization weigh more in downstream
PCA performance and eventually in the identification of spatial domains (Thorrez et al., 2011).
By default, the top 30 PCs and 30-nearest neighbors ( = 30) are selected to build the

expression graph , although these parameters can be modified in the function call to

st.tl.pca_spateo() and st.tl.neighbors(). For the spatial graph , the number of physical
neighbors is set to be 8 by default. Both and can be adjusted to balance the weight
given to transcriptomic and physical neighbors, and we have demonstrated the robustness of
SCC overall performance under a broad range of values for both alongside a series of the
coupled parameters (Fig. S1b). We take the union of both graphs and obtain

, which is then used as input for downstream Louvain or Leiden clustering in
the st.tl.scc() function. In the end, SCC reveals well separated tissue domains that have distinct
intra-tissue transcriptional profiles, which can be further used for downstream analysis, such as
spatial column or layer digitization. SCC can be implemented by calling the following:

adata = st.tl.scc(adata, spatial_key="spatial", key_added="scc",

e_neigh=30, s_neigh=8, cluster_method="leiden", resolution=0.5)
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where e_neigh and s_neigh specify the number of nearest neighbors to consider in gene
expression space (number of neighbors in the PCA space) and the number of nearest
neighbors in physical space, respectively, and the resolution is the Louvain or Leiden method’s
internal resolution parameter, controlling the number of clusters in the final result. For further
information of each argument, please refer to the documentation in the Spateo package:
https://spateo-release.readthedocs.io/en/latest/autoapi/spateo/index.html, same as for all the
following code blocks.

Identify gene expression archetypes and archetype associated genes
We adapted the implementation from Novosparc (Nitzan et al., 2019) to identify gene
expression archetypes and archetype associated genes. Size factor normalized and log(1+x)
transformed gene expression data are used. Pearson correlation matrix of gene expression
between detected highly variable genes or all genes passed basic filterings obtained via
preprocessing module in Spateo are then calculated. Hierarchical clustering based on the
Pearson correlation matrix are then calculated and the resultant cluster number can be
determined by the users. Once gene cluster number is determined, we calculate the average
gene expression of all the genes belonging to each cluster and define the average gene
expression pattern as the gene expression archetypes. To identify archetype associated genes,
we calculate the Pearson correlation coefficient between each gene within the corresponding
cluster to the archetype expression pattern of the cluster of interests. Genes with highest
correlations are regarded as the archetype associated genes.

Spatial domain digitalization

Spatial domain digitalization describes the process of constructing a spatial coordinate
reference system in accordance with any arbitrary axis, enabling identification of genes with
graded or periodic distributions along the directions defined by this coordinate system.
Mathematically, for an arbitrarily-shaped spatial domain, a digitalization result is determined by
the shape of domain boundaries, boundary-derived isolines (analogous to equipotential lines in
physics or cartography) and perpendicular streamlines that define regions within the
reconstructed coordinates system. In detail, digitalization of a spatial domain is adapted by
mapping the potential field in physics, i.e. a scalar field such as the electrical field, given
boundary conditions. To be specific, a continuous is digitized according to the gradient of a
scalar variable (e.g. spatial layer/column values), which depends inversely on the distance
of a given bucket (a bin or a cell) to the target boundary (as ). Such a scheme can be
modeled by Poisson’s Equation:

for ,
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where is the known function of in the domain . Importantly, the potential field can only
be solved when boundary conditions (BCs) are defined. The conditions are either specified by
the bucket-wise values (called Dirichlet or class I BC) under certain known function ,

for

or by the normal derivative of the solution on the boundary (called Neumann or class II BC)

for

These BCs are crucial to determine via iteration methods in numerical analyses, especially
when the geometries of boundaries are complex and irregular.

In this study, we first digitalize the spatial domain with a steady-state field and then infer the
effect of the true internal sources by highly variable genes along the potential gradients that
violate the null hypothesis, thus it simplifies Poisson’s equation to its homogenous case (
): Laplace’s equation. In the three-dimensional (3D) space,  Laplace’s equation is written as:

For visualization purposes, we first use the basic two-dimensional form to demonstrate the
numerical solution with the Jacobi method under the supplied boundary condition,

,

and further extend it to the 3D space.

Numerically, the equation is discretized as

When we choose for homogeneity in both dimensions, the equation can be
written as

Now, the discrete form of Laplace's equation shows that the potential of the central grid point is
the equal-weighted average of four neighborhoods.
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Based on the Jacobi method (Saad, 2003), for all interior grids at the (k+1)-th iteration, we have:

And for an enclosed domain, any neighbor of an interior grid would not fall out of the boundary,
no matter how irregular the domain shape is (Fig. 2g).The iteration process ends either with
convergence when the normalized L2 loss

between two iterations is below 1e-5 by default, or when iterations surpass the maximum
number of iterations (default 100000).

We then solve the real-world boundary problem. For any shape of a bounded domain, the
boundary can be arbitrarily divided into four connected boundaries with specified breakpoints
(Fig. 2h). With two sides, and , respectively hold the fixed potentials as the Dirichlet
BCs, the equipotential lines (the dotted lines with arrows) are naturally perpendicular to the
Neumann BCs and . Note that the normal derivative for an irregular boundary can not
satisfy the numerical estimation, we project the original Neumann boundaries to two custom line
segments, thus approximate the Neumann BC to Dirichlet BC with uniform distribution along
these segments (or original boundaries, with slight loss of precision) for downstream analysis.

It is derived as

for

with .

And

for ,

for .

For numerical convenience, the grids that lay outside the potential field are set to value zero and
and are symmetric about zero. By default, we set and ,
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The final task becomes to solve with the equation:

,

with the boundary conditions

,

,

,

.

To hold these Dirichlet BCs during the iterative updating, the values of the boundary grids
should be re-initialized during each iteration. This process is crucial to insulate the influence of
any exterior grid when only the four closest neighbor grids are applied to calculate the value of
the target grid in the Jacobi algorithm.

Once the solution of is obtained (numerically, every grid has its potential value ), the
domain is theoretically digitalized and can be partitioned into meshes of any equal-area size. To
dissect the “layers”, the equipotential lines are generated by ligation of the grids with the same
value from boundary to and evenly spaced with a constant interval. For the “columns”,
we propose two approaches to handle the boundaries , with varying degrees of complexity.
The first approach is the “one-step” approach.

When the boundaries are relatively regular or smooth (Fig. 2i), the concept of calculating
streamlines that are perpendicular to the equipotential lines is workable. It is equivalent to
calculating the tangent vector field,

,

for each grid, and it is numerically solved by the Runge Kutta fourth order method (RK4) for
approximating the solution of ordinary differential equations. After the tangent field is
constructed, the streamlines are computed by starting at any point of , perpendicularly
crossing each equipotential line under the direction of the tangent field, and finally reaches the
boundary . However, in practice, the RK4 method decreases its precision along with
increment of the boundary irregularity.

The second approach is the “two-round” approach. In the first round of the digitalization, only
equipotential lines are recorded as the result of domain layering. And the method then can be
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interpreted as rotating the domain 90 degrees, and repeating the whole process but
orthogonally columning the domain in the second round. This approach is a rough but effective
approximation that can be adapted in most real-world cases without any extra parameter
settings.

The three-dimensional form of potential for each central point becomes:

and the Jacobi method still works as long as the 3D domain is enclosed. However, the rate of
convergence usually slows down when comparing the solution in two-dimensional space.

In Spateo we can use st.dd.digitize to digitize the spatial domain of interests into different layers
or columns:

# Digitize the area of interest

st.dd.digitize(

adata=adata_bin30,

ctrs=contours,

ctr_idx=0,

pnt_xy=pnt_xy,

pnt_xY=pnt_xY,

pnt_Xy=pnt_Xy,

pnt_XY=pnt_XY,

spatial_key="spatial_bin30"

)

Construct cell type colocalization matrix
We use the ball tree algorithm to find the 10 nearest neighbors in Euclidean space for each
spot, along with the distances to each nearest neighbor. The indices are used to construct a
weighted adjacency matrix, where the magnitude of the entries are spot-to-spot distances. The
sample indices are matched with the categorical labels of each sample, allowing for generation
of a normalized one-hot matrix where each row corresponds to a categorical label (i.e. cell type)
and is normalized by the count of the label in that row. Using the weighted adjacency matrix and
the normalized one-hot matrix, we perform a congruence transformation to aggregate spatial
weights for each cell type pair, returning an array describing cell type-by-cell type colocalization.

In Spateo, we use the following code to create a heatmap of cell-type colocalization:

st.pl.plot_connections(
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adata,

cat_key='Annotation',

save_show_or_return='show',

title_str=" ",

title_fontsize=6,

label_fontsize=6,

colormap=adata.uns['color_key'],

figsize=(4, 4),

)

Investigate cell-type colocalization across different spatial scale
To investigate the spatial niches of a particular cell across different spatial scale, we first
calculate the spatial neighbor cells of all the cells belonging to the cell type of interest. Then, we
calculate the percentage of each cell type within the neighbors of each cell, which defines the
niche composition of the cell. We can next calculate the mean and variance of the percentages
across all cells. By increasing the neighbor size, we can inspect how the niche composition
changes over different spatial scale.

Detection of spatially autocorrelated  genes

To detect spatially autocorrelated genes, we posit the null hypothesis that the gene expression
is spatially randomly distributed without any significant spatial enrichment . We use global
Moran’s I to measure the spatial autocorrelation, which evaluates whether the gene expression
is clustered (close to +1), disperse (close to -1), or random (close to 0). For each gene, the
global Moran’s I index is defined as:

.

The formula assesses the relative concordance (simultaneous over- or under-expression to the
mean ) of expression of any two pairs of neighboring locations , . is the spatial weight,
set to 1 for pairs of neighbors and 0 otherwise. is the sum of all spatial weights, and is
the total number of the spatial spots/bins of interests. The index is proven to follow the
asymptotic normal distribution (Sen, 1977, 2010) and can be standardized to obtain the z-score
and corresponding p-value.

where:
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,

.

For the genes with statistically significant p-values (0.05 by default) and positive z-scores, the
Benjamini-Hochberg (BH) correction is applied to control the overall false discovery rate (FDR,
0.05 by default). We also provide a permutation-based test(Fang et al., 2022) to estimate the
p-value. We perform the permutation 200 times to generate a null distribution, and then
determine the fold change between the measured Moran’s I score and the mean expected score
from the permutations. By calculating the z-score for the observed Moran’s I score based on the
null distribution, we obtain the p-value based on the permutations.

To evaluate the local spatial autocorrelation for each gene, we leverage the local Moran’s I index

with the scaling factor

,

a local spatial autocorrelation metric that can identify cases in which the value of an observation
and the average of its surroundings is either more similar (positive value) or dissimilar (negative
value) than we would expect from pure chance. We bring additional information to improve the
interpretability of local Moran’s I index. Firstly, we create a Moran plot(Anselin, 2019) by
visualizing the expression of each gene in each bucket vs. its local average used in calculating
the index. Next, we perform the same permutation test procedure to reveal the statistically
significant buckets, followed by dividing those significant buckets into four quadrants, where the
first quadrant (hotspot) indicates the gene is highly expressed in target bucket and its
neighbors with ( by default), the second quadrant (diamond) indicates the
gene is highly expressed in the target bucket but surrounded primarily by low values, the third
quadrant (cold spot) indicates the gene is lowly or not expressed in both the target bucket and
surrounding buckets, and the fourth quadrant (doughnuts) indicates the gene is lowly expressed
in the target spot but highly expressed in the surrounding.

To dissect each spatial domain with respect to each of the four quadrants, we first calculate,
among all spatial domains, the maximal number, maximal fraction and maximal specificity of
buckets belonging to any particular domain for any particular quadrant category. We then
identify the spatial domain with highest fraction and similarly the spatial domain with highest
specificity of buckets across all domains and for each quadrant. The identified spatial domain
and associated quadrant are then used for downstream analysis and interpretation. With
Spateo, spatially autocorrelated genes can be identified using

60

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 11, 2022. ; https://doi.org/10.1101/2022.12.07.519417doi: bioRxiv preprint 

https://www.codecogs.com/eqnedit.php?latex=E%5BI%5D%3D-%5Cfrac%7B1%7D%7BN-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=V%5BI%5D%3DE%5BI%5E%7B2%7D%5D-E%5BI%5D%5E%7B2%7D#0
https://paperpile.com/c/UZaHS9/AnaA
https://www.codecogs.com/eqnedit.php?latex=I_%7Bi%7D%3D(e_%7Bi%7D-%5Cbar%7Be%7D)*(%5Cfrac%7B1%7D%7BS_%7Bi%7D%5E%7B2%7D%7D%5Csum_%7Bj%3D1%2Cj%5Cneq%20i%7D%5E%7BN%7Dw_%7Bi%2Cj%7D(e_%7Bj%7D-%5Cbar%7Be%7D))#0
https://www.codecogs.com/eqnedit.php?latex=%7BS_%7Bi%7D%5E%7B2%7D%7D%3D%5Cfrac%7B%5Csum_%7Bj%3D1%2Cj%5Cneq%20i%7D%5E%7BN%7D(e_%7Bj%7D-%5Cbar%7Be%7D)%5E%7B2%7D%7D%7BN-1%7D#0
https://paperpile.com/c/UZaHS9/TOJa
https://www.codecogs.com/eqnedit.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=w_%7Bi%2Cj%7D%3E0#0
https://www.codecogs.com/eqnedit.php?latex=w_%7Bi%2Cj%7D%3D1#0
https://doi.org/10.1101/2022.12.07.519417


Moran_df = st.tl.moran_i(adata, genes=["gene_A", "gene_B", "gene_C"],

spatial_key="spatial", k=20, permutations=1000)

Calculate cell type spatial enrichment score via Moran’s I
We use the distribution of numbers of cells belonging to a particular cell type across all bins (bin
size 60 for the hemibrain data) for spatial enrichment analyses. Specifically, we first assign each
cell to a particular bin based on the identity of the bin that contains the centroid of the cell
calculated during the segmentation procedure. By doing so, each cell will be uniquely assigned
to a bin, but each bin may have more than one cell. Then, for the cell types of interest, we set
the value for the centroids of all cells belonging to this cell type to be 1 and else 0. We next
calculate the sum of the values of all centroids for each bin. The resultant values can then be
used to calculate Moran’s I score for each cell type, similar to what is described in Detection of
spatially autocorrelated  genes.

Apply generalized linear models (GLM) to detect differentially expressed
genes in different contexts
In this study, we used GLM as a general approach to identify genes significantly changing as a
function of some continuous variables, such as the digitized layers / columns (Fig. 2G), the
pseudospace defined by A-P axis or the principal curve learned for a particular 3D reconstruct
organ, or the differential geometry quantities computed after learning the morphological vector
field. In general, the full model of the GLM regression is:

And the reduced model is:

A likelihood ratio test is then used to compare these two models and to compute p-value. We
BH adjust the P-value and define significant genes as genes with q-val < 0.05.
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Ligand-receptor interaction prediction in spatial transcriptomics

A critical advantage of spatial transcriptome (ST) data over conventional scRNA-seq data is that
ST preserves spatial information, allowing us to characterize the cells and their surrounding
microenvironment and infer the complex interplay. A cell-type proximity matrix is firstly
calculated to pinpoint spatially co-localized cell types, and prioritize cell-cell interactions
between the cell types of interest. For the given couple of cell types, users should manually
define the sending cell type (that expresses the ligands) and the receiving cell type (that
expresses the receptors). The potential interacting cell pairs of these two cell types are then
extracted from the physical k-nearest neighbors (KNN) graph (N=10 by default). Candidate
ligands or receptors from the CellPhoneDB(Efremova et al., 2020) v3.1.0 database are selected
when their expression levels are high (i.e. compared to all possible ligands/receptors, the ligand
or receptor is among the top 20 highest expressed ligands/receptors, where 20 is used as the
default cutoff ) in the appropriate sub-cluster (short for spatial-proximal subset of ligand/receptor
cell cluster). Subsequently, for a ligand-receptor pair, the interaction score is either calculated as
the averaged product of ligand and receptor expression for all extracted cell pairs, or as the
positive rate, the proportion of cell pairs that simultaneously express the ligand and receptor. To
test the significance of the interaction score, a random sampling test is performed. In each
sampling process, the same number of spatially-neighboring cell pairs are randomly selected
from across the entire sample to calculate the interaction score for the given ligand-receptor
complex. The random sampling process is repeated 1000 times by default, and the p-value is
defined as the proportion of the interaction scores that are higher than the actual scores. The
interactions with p-value <0.05 are considered statistically significant. Furthermore, the
discovery of interactions can be additionally conditioned on the specificity of the ligands and
receptors to the regions of sending and receiving cells that are close to one another. After
computing the score for each ligand-receptor pair, the sender or receiver cell type of interest can
be categorized as either being spatially proximal to or spatially distant from cells of the receiving
or sending cell type, respectively (henceforth referred to as the “spatially proximal subset” and
the “spatially distant subset”)- this information is available from the k-nearest neighbors graph
(see above). The “specific” interactions can be identified from significant differential expression
of the ligand (for sending cell types) and the corresponding receiver (for receiving cell types) in
the spatially proximal subset compared to the spatially distant subset, where this identifier is
assigned using a Wilcoxon rank-sum test. Thus interactions can be deemed to be “significant
but not specific”, “significant and specific”, etc. Spateo contains reference databases for human,
mouse, Drosophila, zebrafish and axolotl ligand-receptor interactions, which can be accessed
for ligand-receptor interaction analysis by calling:

cci_dict = st.tl.find_cci_two_group(adata, path="/database",

species="human", group="cell_type", lr_pair=None,

sender_group="cell_type_a", receiver_group="cell_type_B", top=20,

p_value=0.05)
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where path is the path to the folder containing ligand-receptor database(s); in the Spateo repository,
these can be found in the “database” folder. Group is the key in the AnnData object that stores cell
type labels, lr_pair can be used to provide a list of ligand-receptor pairs of interest (where each takes
the form “{ligand}-{receptor}”), and top is used to filter the list of ligands and receptors to consider
down to the top genes based on expression in the cell types specified by sender_group and
receiver_group.

Spatially-aware modeling of cell-cell interaction with spatial transcriptomics
Briefly, on the rationale behind the implementation of spatially-aware models: nonspatial
methods assume that random errors of the regression are independent and identically
distributed; i.e. the error for one cell is completely uncorrelated from the errors of its neighbors.
As can be seen with our methods to measure the significance of spatial distributions of cell
types, many genes are spatially dependent, such that spatially proximal pairs of cells will be
more similar in many respects compared to spatially-distant pairs, violating the key assumption
of spatially-unaware regressions. Significant spatial autocorrelation and cross-correlation are
capable of driving spurious correlations(Ploton et al., 2020); to mitigate potential
overestimations of model predictive power, for each cell we combine information from each of its
neighbors to constitute the final feature set, with the architectures for the two classes of
methods for doing so described below.

Spateo’s modeling suite comprises spatial lag models that consider neighboring values for
endogenous and exogenous values as well as error terms, and two modifications to a
generalized linear formulation for which each exogenous variable aggregates information from
its neighbors, in which each endogenous (dependent) term is modeled by a log-linear
distribution and each exogenous (independent) variable represents a factor for which the
endogenous variable is assumed to be dependent on to some degree. This dependency is
parameterized via a maximum likelihood estimation procedure in which the model takes the
following general form for each gene P:

,

.

Where the generic represents an array of any spatial variates or covariates, for example
representing the spatial domain in the form of a binary one-hot dummy variable, a
probabilities vector obtained using a cell type deconvolution algorithm, or the expression of a
gene of interest. can represent cell-specific molecular attributes, as is the case with the
spatially lagged model, or can incorporate information from the local neighbors through matrix
operations, as is the case with both the niche composition and niche interaction models
introduced in the following sections. Optionally, the γ term describes the contribution of spatial
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lag of the dependent variable, where is the spatial weight between cell i and cell j in its local
neighborhood. Here is the error term, assumed to be a white noise represented by a
Gaussian distribution with zero mean and unit variance.

Infrastructure

Nearest neighbor graph
We represent the spatial neighborhood of each cell via a weighted undirected graph G(V, E),
where each vertex v ∈ V represents a cell and each other vertex is connected to v by an edge
with weight dependent on the distance between the two vertices, computed using the spatial
coordinates of each cell. Programmatically, this is encoded as a weighted adjacency matrix.
From this graph, we define the neighborhood of each cell in terms of its k nearest neighbors,
where k is either a fixed user input or can be computed by finding all neighbors within a radius
defined by user-specified parameters p and sigma, where p is a proportion of the maximum
radius and sigma is the standard deviation of the Gaussian distribution that spatial weights are
assumed to decay following. The fixed-neighbor and fixed-radius methods for nearest neighbor
definition can be implemented as follows, respectively:

st.tl.generate_spatial_weights_fixed_nbrs(adata, spatial_key="spatial",

num_neighbors=10, method="kd_tree")

st.tl.generate_spatial_weights_fixed_radius(adata, spatial_key="spatial",

p=0.05, sigma=100, method="kd_tree")

The spatial graphs and spatial distances are saved to adata.obps[‘spatial_connectivities’] and
adata.obsp[‘spatial_distances’], respectively. By default, the 10 nearest neighbors are selected
to build the graph.

Spatially-aware models
Multiple potential sources of technical variation lead to overdispersion and high dropout rates in
single-cell data, producing characteristic right-skewed count distributions that result in inferential
underpowering of general linear models due to an inability to reasonably assume normality of
the raw or log-transformed counts. Probabilistic approaches have typically been used instead,
fitting data at the level of reads and UMIs using a negative binomial(Grün et al., 2014),
zero-inflated negative binomial(Eraslan et al., 2019; Lopez et al., 2018; Risso et al., 2018), or
Poisson distribution(Cable et al., 2022a, 2022b; Kharchenko et al., 2014). Note that Spateo’s
modeling core is capable of generalized linear regression following a variety of distributional
assumptions, including Poisson, Gaussian, and negative binomial, however a model following
the Poisson assumption will be detailed here. For each gene of interest, we aim to model ,
the observed RNA counts for cell i and gene j. We assume Poisson sampling such that
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with expected transcript count . Here is a mixture of k explanatory variables
for each gene j, defined generally by

where each predictor vector for variable k is parameterized by linear coefficient
. In general, each variable k can take many forms, for example:

1) Indicator variable, as is the case for the Niche model. In this case, is always either 0
or 1, representing e.g. a classification into a particular cell type among a set of possible
cell types (among any other possibility involving categorical labels).

2) Discrete variable, as is the case for the category regression model included in Spateo. In
this case, can be 0 or any other integer, representing e.g. the number of cells of a
particular category within the local neighborhood of each cell (among any other
possibility involving categorical labels).

3) Continuous variable, as is the case with the cell-type specific ligand-receptor regression
model described in the SLICE section. In this case, can take on continuous values
representing e.g. gene expression.

In the context of our Poisson regression, each coefficient can be interpreted as the log
fold-change of gene expression per unit change in for variate k and gene j.

We additionally introduce an optional stabilizing nonlinear rectification(CIRANO. and Dugas,
2002) to prevent the explosion of when parameters are large, selectable by choosing
“softplus” as the argument for the “distr” parameter. With this modification, is instead
defined as

where the constant term 1 ensures numerical stability. For model fitting, we aim to parameterize
the Poisson distribution such that the probability of observing given transcript count is
maximized; this can be achieved by minimizing the negative log-likelihood function for a Poisson
distribution
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with respect to parameters and , given by

for each gene j.

Additionally, as niche-based models are prone to fitting large numbers of features due to the
consideration of all possible combinations of categorical labels within a given cellular niche, for
interpretability and to eliminate redundant information from super-collinear futures we constrain
these models to be sparse, such that a relatively small number of relevant features are identified
under the assumption that not all features provide substantive contributions to each component.
Model parameterization is guided by a penalization of the log-likelihood, where the penalty term
depends on the size of each parameter. Specifically, we introduce an elastic net penalty capable
of interpolating between the Lasso(Tibshirani, 1996) and Ridge(Hoerl and Kennard, 1970)
penalties with hyperparameter :

where is the parameter vector except the intercept term . When is zero, the model will
use the Ridge penalty, and when is one the model will use the Lasso penalty. The elastic net
penalty and log likelihood function are additively combined to result in the objective function,
which is minimized following a batch gradient descent procedure,

where is the L1 regularization parameter (referred to as “lambda” in code but changed here
as lambda is used for the Poisson conditional intensity function) and is discovered at runtime by
choosing the optimal value following a k-fold cross validation procedure. k = 3 was used for the
analysis shown in Figure 3. For each test set, any number of provided values of along a
descending regularization path are tested, initializing successive models with
the solution of the previous model for rapid convergence. The resulting in the highest
pseudo-R2 value is chosen, where the pseudo-R2 value is given by

where is the log-likelihood of observing the true transcript counts given a
theoretical parameterization that would perfectly fit the target distribution, is the
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log-likelihood of observing the true counts given the parameterization that we obtain from our
fitting process, and is the log-likelihood of observing the true counts given a null
model parameterization that maps each set of data to the mean of the target distribution.

Additionally, a list of values can be given for any regression parameter, and a grid search will
identify the optimal value for each parameter given in this way.

Niche model
Cell-cell interactions are indirectly connected to phenotypic changes, which are mediated by
subsequently coordinated changes in gene expression in receiving cells. To elucidate these
effects, an understanding of differential expression conditioned on cell-cell communication is
required. However, it is difficult to attribute gene expression patterns to any singular
ligand-receptor interaction, difficult to disentangle the contributions of multiple ligand-receptor
interactions and difficult to adequately explain the variance in any gene expression pattern given
only what we already know about ligand-receptor interactions, necessitating a method capable
of incorporating both known ligand-receptor interactions and any unknown interaction
mechanisms. To do so, we note that as a result of the quantifiable change in receiver gene
expression directly resulting from ligand-receptor interaction, a partial statistical dependency is
induced, of a component of the receiving cell’s gene expression profile on all aspects of the
sending cell’s gene expression profile. From this partial dependency, patterns may emerge in
which the marker genes of the sending cell tend to be more closely associated with gene
expression patterns induced in the receiving cell, an association that can be measured and
modeled. With the niche model, we propose to leverage these dependencies, hypothesizing that
the identity of a cell’s closest neighbors can be used to predict downstream signaling effects.
The design matrix of this model and the cell type-specific interaction model contain variables
parameterized by coefficient and can be interpreted as the gene expression change across
cells per unit change of each variate g for gene j. The inputs are a gene expression matrix

, where N is the number of cells and G is the number of genes, a matrix of observed
cell types where L is the number of distinct cell type labels and an adjacency
matrix , which is calculated based on the spatial proximity of cells and furthermore
binarized such that if , where d describes the Euclidean distance
between any two nodes and is the user-defined maximum allowable distance
between neighboring nodes, and otherwise.

To generate the design matrix, we compute discrete target cell interactions as the matrix product
of the adjacency matrix and the cell type identity array similarly to the process used for
NCEM(Fischer et al., 2021), resulting in

where represents an indicator function. can be interpreted as a specification of the
presence of cell type L within the local neighborhood of each sample. To generate a matrix
representation of source-target cell interactions, we compute the interaction between each row
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of and each row of via the matrix product of the transposition of and followed by
an optional thresholding step such that the features then become indicator functions
representing the presence of at least one interacting pair of cell types within the niche of any
given cell. The resulting interaction matrix is then taken as the complete design matrix, given by

.

Overall, a particular gene’s expression Yi, j for cell i and gene j can thus be modeled as

,

.

where is the one-hot cell type (or other category) vector for the ith cell with k possible
categorical classifications, is the one-hot cell type vector of the hth neighboring cell with k
possible categorical classifications, is the spatial weight between cells i and h (the weight
of the appropriate edge in the spatial graph), “vec” is a flattening operation and is the gth

variate, here representing the gth cell type-cell type pair as well as the gth column of the product
in the innermost parenthetical term. This product can also take the form of an indicator array,
where values are 1 if a given cell type-cell type pair can be observed and 0 if it cannot. We are
thereby able to predict RNA count values using a spatially-aware generalized linear model,
considering the suboptimality of the normal distribution assumption for scRNA-seq
data(Hafemeister and Satija, 2019; Townes et al., 2019).

Spatially-aware Ligand:receptor-based Inference of Cell type-specific Effects (SLICE)
model
Although useful to infer the correlates and potential consequences of interaction, the niche
regression model cannot inform which ligand(s) and receptor(s) likely caused the observed
expression. Prediction of precise downstream effects is confounded by the ability of
promiscuous receptors to bind multiple ligands and vice versa, necessitating analysis methods
capable of unraveling the contributions of each individual ligand-receptor pair. For this purpose,
we introduce a parametric framework combining spatial, categorical and ligand-receptor
expression information to estimate downstream effects of specific interactions. This model
utilizes the categorical identities of ligand-expressing sender cells and receptor-expressing
receiver cells as covariates of the expression of specified ligands and receptors, such that the
predicted effects are additionally conditioned on qualities of interest, e.g. cell type.

Users can supply either a list of ligands of interest and a list of additional genes of interest to
serve as the predictors and targets of the regression model, respectively, or can supply only the
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list of ligands, in which case a knowledge graph is used to automate the selection of targets
from prior knowledge signaling networks. Ligand-receptor interactions from CellTalkDB(Shao et
al., 2021), pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG)(Kanehisa
and Goto, 2000) and Reactome(Gillespie et al., 2022), and transcription factors from
AnimalTFDB(Hu et al., 2019) were integrated to construct this signaling network.

Similarly to the Niche model, the inputs used to construct the design matrix are a gene
expression matrix , a matrix of observed cell types and a binarized
adjacency matrix . Given m ligands and optionally r receptors, all possible
interacting pairs are identified using the CellPhoneDB(Efremova et al., 2020) database (v3.1).
We amend the cell type identity array with the expression of each ligand and the expression
of each receptor, resulting in

respectively, where m and r refer to the mth ligand and rth receptor and and are ligand
and receptor expressions in the Nth sample. Optionally, we use the spatial lag of to compute

, where each element in is instead a weighted average of the expression of receptor r
computed over its local neighborhood. Similarly to the procedure for the Niche model, we
compute the interaction between each row of and each row of via the matrix product

of the transposition of and . This process is repeated for all combinations of ligands
and receptors identified, and the resulting arrays are combined to form the complete design
matrix, given by

where w denotes the combinations identified. Overall, a particular gene’s expression for cell
i and gene j can thus be modeled as

,

.

where is the gth variate for the fth ligand-receptor pair, here representing the gth cell type-cell
type pair as well as the gth column of the product in the innermost parenthetical term, is the
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expression of ligand f in cell i, is the expression of receptor f in cell i and all other quantities
are as described for the Niche model.

For this model as well as the niche model, the regression can be constrained on the basis of
any preselected subset of categorical groupings. An example of class instantiation and gene
expression prediction is included below:

mod = Niche_Model(adata, group_key="Cell_type", genes=["gene A", "gene B",

"gene C"], distr="poisson")

mod_coeffs, _ = mod.GLMCV_fit_predict(gs_params=None, cat_key="Cell_type",

categories=["Cell type A", "Cell type B"], reg_lambda=[0.1, 0.2, 0.3])

where “categories” sets the aforementioned subset of categorical groupings, and “cat_key” is
used to specify the key in adata.obs where the categorization is defined. Note also that
“reg_lambda” is used to provide a list of possible regularization coefficients and “gs_params” is
an optional dictionary with keys corresponding to arguments for the “GLM” class, used to pass
lists of values to designated arguments to initialize a grid search that will find the optimal
combination of these hyperparameters. The optimal lambda and optimal combination of
hyperparameters is decided by selecting the fitted model with the highest pseudo-R2 value. For
the analyses in figure 3, we allowed lambda to vary between three values on a log scale
between 0.001 and 10-5.

Spatially-lagged models
Single-cell RNA sequencing data is frequently transformed before analysis (e.g. through a
logarithmic transformation) such that the distribution of values more closely approaches a
Gaussian and so that other methods that assume normality can be used. For this case, general
linear regression can be used also in estimation of gene-level or niche-level effects, with the
consideration that the model should also consider the spatial dependencies between samples
and variables. For this purpose, we are able to consider the exogenous lag (the values of the
independent variables in the neighborhood of each sample) as instruments for the regression,
and can introduce a spatially lagged linear regression model(Rey and Anselin, 2010), where the
expression for cell i and gene j can be modeled generally using equation 1, where the
spatial lag term is nonzero and determined by model fitting. For receptor genes of interest
(typically chosen by hypothesizing that these genes may be associated with particular ligands of
interest), Spateo can determine the relationship between expression of these receptors,
expression of these receptors in the neighboring cells and expression of ligands in the
neighboring cells by fitting the following model:
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where is the log-transformed (or any other equivalent normalizing transformation, e.g.
variance scaling) variant of the gene expression, is the identically-transformed expression
of ℓ genes of interest (stylized as ℓ here to refer to multiple ligands as per the inputs to the
model), and the exogenous lag (the expression of gene j in the local neighborhood of the site i,
here represented as the weighted summation of all neighboring cells h) is a component of the
estimation, with its dependency quantified by coefficient . Similarly to the SLICE model, if
target genes are not provided, Spateo’s database is used to automate the selection of
likely-linked targets for the given ligands.

We additionally extend this idea to the Niche model, noting that simultaneous information about
the cell type colocalization patterns and gene expression patterns of neighboring cells may be
useful in eliminating coincidental patterns that may not be biologically meaningful. This takes the
form:

where is again the log-transformed (or any other equivalent normalizing transformation, e.g.
variance scaling) variant of the gene expression, “vec” is a flattening operation and is the gth

variate, here representing the gth cell type-cell type pair as well as the gth column of the product
in the innermost parenthetical term.

For both models, the coefficients , and the intercept are estimated by the two-stage least
square method implemented in Pysal’s GM_lag() function. Each of these models can be
instantiated from the same class:

mod = Lagged_Model(adata, model_type="ligand", lig=["ligand A", "ligand

B"], rec=["receptor A", "receptor B"], rec_ds=["gene A", "gene B"],

species="human", distr="gaussian")

mod = Lagged_Model(adata, model_type="niche", group_key="Cell_type",

genes=["gene A", "gene B", "gene C"], distr="gaussian")

From here, the model can be fit using the same function call:

coeffs, y_predicted, residuals = mod.run_GM_lag()
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Computation of sender-receiver effects
For the all spatially-aware and spatially-lagged models, we use hypothesis testing to determine
significance for each interaction parameter following estimation of the parameter vector for
variate k for gene g. By the principle of asymptotic normality(van der Vaart, 2000), we can
approximate the deviation of the estimated value from the unknown true parameterization by

where n is the total number of cells and is the inverse Fisher information matrix that
measures the amount of information an observable random variable X carries about parameter

upon which the probability of X is dependent. The standard error of , denoted , is

Knowing the value of the parameter as well as its standard error, we can compute the z-statistic:

Using a two-tailed z-test, we compute a p-value for the null hypothesis that as

where F is the standard normal distribution function. To assign “significant” labels, q values are
calculated across all features to control the false discovery rate (FDR) using the
Benjamini-Hochberg procedure(Benjamini and Hochberg, 1995), using a default FDR of 0.05.
Following computation of sender-receiver effects, we can set cutoffs for effect size and
FDR-corrected p-value to identify genes for which the predicted effect indicates a significant
change in the presence of the niche factors used as regressors, with 0.4 and 0.05 as the
respective default values.

Selection of regression targets
For the axolotl brain data, several gene sets were used as regression targets. The gene set in
Fig. 3i and Fig. S3 comprises all genes with nonzero expression in >5% of cells in addition to
Moran’s I coefficient that is significant and >0.4. The gene set in Fig. S4 consists of genes with
function in glial differentiation and axonogenesis, Wnt/Notch signaling, and translation initiation,
as determined from gene ontology (GO) annotations. The gene set displayed in Fig. S5 consists
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of all genes expressed in >5% of cells and which had a significant coefficient with reaEGC cells
as the receiver cell population.

Spatial RNA velocity vector field analyses of mouse heart cell atlas
For the heart cell atlas dataset, we identified cell types across batches and timepoints by
computing Pearson residuals and performing Harmony (Korsunsky et al., 2019) de-batching,
Louvain clustering and finally marker gene detection with differential gene expression analyses.
RNA velocity estimation and RNA velocity vector field analysis were performed using Dynamo
with default parameters.

The  Stereo-seq experiment

Tissue collection
The methods related to laboratory animal experiments presented were approved by the
Institutional Review Board of the Ethics Committee of BGI (Permit No. BGI-IR20210903001).
Mouse brain was dissected from adult C57BL/6J mice. First, the mice were sacrificed via carbon
dioxide asphyxiation. Then the whole brain was harvested and immediately immersed in
embedding molds with pre-cooled Tissue-Tek OCT (Sakura, 4583). Next the mold with tissue
was snap-frozen in liquid nitrogen prechilled isopentane until the OCT was completely solid and
then transferred to a -80 °C freezer for storage before the experiment. The embedded whole
mouse brain was cut coronally with a thickness of 10 µm using a Leika CM1950 cryostat.

Drosophila samples used in this study were from Drosophila strain w1118. Flies were
maintained on the cornmeal-sucrose-agar media at a constant temperature of 25°C in an
incubator with 12 h/12 h light/dark cycle. Embryos of desired ages were collected from the
grape juice plate (2.15% w/v agar, 49% v/v grape juice, 0.2% v/v propionic acid, 0.02%
phosphate acid). Designated embryos were picked and observed under a microscope to verify
their developmental stages. Before embedding, samples were stained and washed following
methods in the previously published paper(Wang et al., 2022). We immobilized samples with
double-sided tapes and adjusted the orientations of each sample to cut them along the left-right
axis for the sagittal section. Drosophila embryos used in this study were embedded and
sectioned together. Cryosection was performed with 7-μm slice thickness.
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Stereo-seq experiment and spatial transcriptomic sequencing

Tissue sections were applied to Stereo-seq chips immediately after cryosection. To reduce
batch effect, multiple cryosection slices of Drosophila embryos were subjected to one 1 x 1-cm
Stereo-seq chip. The mouse brain section was subjected to one 1 x 1-cm Stereo-seq
chip.Stereo-seq library was constructed and sequenced following the Stereo-seq protocol
(https://db.cngb.org/stomics/flysta3d/stereo.seq.html). Briefly, sections on Stereo-seq chips were
fixed in methanol at -20 °C for 40 min. After removing the methanol, chips were incubated in the
tissue fluorescence staining solution (1/200 InvitrogenTM Qubit ssDNA HS Reagent and 2 U/μl
RNase Inhibitor in 5× SSC) for 5 min. Tissue fluorescence staining solution was then removed
and the chip was washed with 100 μl 0.1× saline-sodium citrate (SSC) buffer. After taking
fluorescence images from the chip, sections were permeabilized on chip with 100 mL 0.1%
pepsin in 0.01 M HCl at 37 °C for 5 min. Permeabilization solution was then removed and the
chip was washed twice with 100 μl 0.1× SSC buffer. For cDNA generation, 100 μl RT buffer (10
U/mL reverse transcriptase, 1 mM dNTPs, 1 M betaine solution PCR reagent, 7.5 mM MgCl2, 5
mM DTT, 2 U/mL RNase inhibitor, 2.5 mM Stereo-seq-TSO and 1x First-strand buffer) was
added on the chip and then the chip was maintained in a 42 °C incubator for 1 h. RT buffer was
then removed and the chip was washed twice with 100 μl 0.1× SSC buffer. Tissue removal was
performed by incubating the chip in tissue removal buffer (10 mM Tris-HCl, 25 mM EDTA, 100
mM NaCl, 0.5% SDS) at 37 °C for 30 min. Tissue removal buffer was then removed and the
chip was washed twice with 400 μl 0.1× SSC buffer. cDNA was released from the chip by
incubating the chip in 400 μl release buffer (5% Exonuclease I and 1× Exo I Reaction Buffer in
H2O) at 55 °C for 3 h. Released cDNA was purified with 0.8× XP clean beads (Beckman
Coulter) and then amplified with KAPA HiFi Hotstart Ready Mix with 0.8 mM cDNA PCR primer.
The PCR product was purified using 0.7X XP beads. For each chip, 20ng cDNA was sheared
with in-house Tn5 transposase and then amplified and purified. Final libraries were sequenced
on a MGI DNBSEQ-Tx sequencer.

Reconstruction and analyses of whole-body 3D models of tissues and
organs
Most existing spatial transcriptomics methods offer 2D spatially resolved transcriptomes but
tissue, organ and embryo are 3D identities that have unique spatial structure. Leveraging the
ultra-high field of view of Stereo-seq, we can perform continuous slicing of the same tissue or
organ (such as Drosophila(Wang et al., 2022) or even mouse embryos(Chen et al., 2022)).
However, after the slicing and sequencing, the original coordinates of the cells are lost. Spateo
builds upon the PASTE algorithm(Zeira et al., 2022) to align different slices to create aligned 3D
point clouds, from which we can build 3D models and perform various downstream
morphometric analyses.
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Align serial slices by fused-Gromov–Wasserstein (FGW) optimal transport and solving
generalized weighted Procrustes, based on the PASTE algorithm
Assume we have spatially-resolved, serial continuous slices profiled with Stereo-seq and others,

represented as , where denotes profiled slices,
denotes the spatial coordinates in two dimensional space ( ) of spots in

slice , and is the measured readout features (a vector of gene expression) at
these buckets (representing either cells, binned grids, or spots). In general, instead of using the
spatial coordinates, we use the distance matrix , where , to represent the
spatial information with the advantage of being invariant to translation or rotation of the
slice(Zeira et al., 2022). Our goal is to align these slices sequentially to reconstruct a 3D model
of a tissue, organ or an entire embryo based on the matching of the gene expression pattern
and spatial localization between buckets across slices. Spateo builds on the PASTE
algorithm(Zeira et al., 2022) to align the slices with fused-Gromov–Wasserstein (FGW) distance,
which extends the Wasserstein and Gromov–Wasserstein distances to encode the gene
expression and spatial information in learning the optimal transport. Specifically, for every two
consecutive slices, , containing buckets, over a common set of genes expressed
across all slices, we want to find a optimal mapping , following the transport cost ( )
and spatial preservation(Zeira et al., 2022):

Intuitively, the above equation implies that the optimal mapping will ensure most similar cells
across slices will be aligned while two cells nearby in one slide will be mapped to two other cells
also nearby in another slice. With the optimal transport matrices learned, we calculate the
rotation and translation matrices ( ) sequentially, starting for the first two slices, to project to
all slices to the same coordinate system by solving a generalized weighted Procrustes
problem(Zeira et al., 2022):

.

Setting the coordinates of the first slice as the reference, Spateo next sequentially applies the
rotation ( ) and translation ( ) matrix to project all slides into the same 2D coordinate system.
After appending the coordinates from the third dimension for all buckets of the same slice with
the physical depth along the slicing axis, Spateo returns the aligned 3D coordinates of all
buckets in 3D space.

In practice, we find that using the binning grids to learn the optimal transport and the rotation
and translation matrices often improves the accuracy and robustness of the alignment probably
because single cell segmentation is imperfect and noisy, while binned grids enable us to focus
on the global mapping, as demonstrated below:
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align_cellbin_slices, align_binning_slices = st.tl.models_align_ref(

models=cellbin_slices_sample,

models_ref=binning_slices_sample,

spatial_key="spatial",

key_added="align_spatial",

n_sampling=500,

numItermax=500,

numItermaxEmd=100000,

device="0"

)

Create surface polygon mesh, volumetric mesh and voxel models of a whole embryo, or
individual organs from 3D point clouds with PyVista
The key innovation of Spateo over PASTE is its ability to perform various downstream 3D
modeling and morphometric analyses with the 3D aligned points clouds. In particular, we
leverage the PolyData data structure from PyVista to represent the 3D point cloud, where each
cell is annotated with the tissue identity, using the following function:

embryo_pc = st.tdr.construct_pc(

adata=adata.copy(),

spatial_key="3d_align_spatial",

groupby="anno_tissue",

key_added="tissue",

colormap=tissue_colormap,

)

With the point cloud data, we can build upon several established algorithms to create surface
polygon meshes for the entire embryo or different organs, as shown below:

embryo_mesh, _ = st.tdr.construct_surface(

pc=embryo_pc,

key_added="tissue",

label="embryo_shell",

color="gainsboro",

alpha=0.6,

cs_method="marching_cube",
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cs_args={"mc_scale_factor": 1.},

smooth=5000,

scale_factor=1.02,

)

The methods for constructing surface meshes include:

● 'pyvista': Generate a 3D tetrahedral mesh based on pyvista.
● 'alpha_shape': Computes a triangle mesh based on the alpha shape algorithm.
● 'ball_pivoting': Computes a triangle mesh based on the Ball Pivoting algorithm.
● 'poisson': Computes a triangle mesh based on the Screened Poisson Reconstruction.
● 'marching_cube': Computes a triangle mesh based on the marching cube algorithm.

We next set the diameter of the each cell’s 3D geometry as that from the segmentation to obtain
3D volumetric meshes of each cell. In Spateo, three geometries, including cube, sphere, and
ellipsoid, are supported:

embryo_cells = st.tdr.construct_cells(pc=embryo_pc,

cell_size=embryo_pc.point_data["cell_radius"], geometry="sphere", factor=0.2)

We can also voxelize the closed surface mesh into 3D voxels, where the size of voxels is
determined by the density parameter:

embryo_voxel = st.tdr.voxelize_mesh(mesh=embryo_mesh, voxel_pc=None,

key_added="tissue", label="embryo_voxel", color="gainsboro", smooth=500)

The implementation of building point cloud, surface mesh, and 3D cell geometry or voxel
models in Spateo is a highly flexible strategy that can be generally applied to a single organ or
the entire embryo.

Automatically identifying anterior-posterior (A-P) and dorsal-ventral (D-V) axes
To identify the A-P and D-V axes of the reconstructed 3D model of an embryo, we apply
principal component analysis (PCA) to the 3D coordinates of aligned buckets. We then manually
select the principal components to define the axes. For the Drosophila embryo used in this
paper, the first and third principal components correspond to the A-P and D-V axes respectively,
as shown below:

pca = PCA(n_components=3)

pca_spatial = pca.fit_transform(np.asarray(embryo_adata.obsm["tdr_spatial"])).astype(int)

embryo_adata.obs["ap_axis"] = pca_spatial[:, [0]]

embryo_adata.obs["dv_axis"] = pca_spatial[:, [2]]

77

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 11, 2022. ; https://doi.org/10.1101/2022.12.07.519417doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.07.519417


embryo_adata.obsm["pca_spatial"] = pca_spatial

To identify axis-dependent genes, we next projected each cell to the axis to define the
“pseudospace” for each cell based on the distance from the projection point to the start
projection point along the axis. We next performed a GLM regression to identify genes that
significantly change along the axis.

Volumetric and morphometric analyses
With the reconstructed 3D voxel model of the organ or embryo, we can categorize
morphogenesis modes for each organ, including organ expansion, shrinkage, migration and
convergence. We can further calculate a series of morphometric properties, including length,
surface area, volume, and cell density:

morph = st.tdr.model_morphology(model=um_mesh_model, pc=um_pc_model)

By comparing each morphometric quantity across different time points, we can reveal the
temporal morphometric kinetics at organ or embryo level.

Principal curve and principal graph analyses of organs
A principal curve or graph is a -dimensional curve or graph that passes through the middle of
a data cloud. Previously, principal curves or graphs have been used to infer the pseudotemporal
trajectories of linear, bifurcated, circular or other complex biological processes from single cell
dataset, e.g. scRNA-seq. Here, we extend their application to reveal the structure of an organ
based on the reconstructed 3D models. In Spateo, we incorporated three powerful approaches
to learn the principal curve or graph that represents the organ skeleton: NLPCA (Nonlinear
principal component analyses), two RGE (reversed graph embedding) algorithms, including
SimplePPT (Simple principal tree algorithm) and DDRTree (Discriminative dimensionality
reduction via learning a tree), and ElPiGraph (elastic principal graphs).

NLPCA. NLPCA is a global learning algorithm, implemented in prinPy
(https://github.com/artusoma/prinPy) that we adapted in Spateo, to compute the principal curve
via nonlinear principal component analysis. This algorithm starts with making an initial guess of
a principal curve and iteratively refine the curve by creating an autoassociative neural network
with a "bottle-neck" layer which forces the network to learn the most important features of the
data (https://github.com/artusoma/prinPy).

RGE. Reversed graph embedding (RGE) is a general and powerful framework of graph
learning that was championed in accurately and robustly inferring complex pseudotemporal
trajectories from scRNA-seq or scATAC-seq datasets. The key novelty of the RGE is that it
simultaneously learns a principal graph of the cell trajectory and often a low dimensional
representation of the single cell dataset that can be mapped back to the original
high-dimensional space. Various RGE algorithms have been developed, including SimplePPT,
DDRTree, and others, each is developed for certain learning tasks.
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The first RGE technique proposed is the SimplePPT algorithm which is tailored for learning a
tree structure in the original space, or in some lower dimension retrieved by dimensionality
reduction methods such as PCA. DDRTree is a novel extension of simplePPT from the RGE
family, and is used by Monocle 2 (Qiu et al., 2017) as the default RGE technique. Compared to
the SimplePPT algorithm, it provides two key features: First, DDRTree explicitly learns the
principal graph while simultaneously reducing its dimensionality and learning the trajectory.
Second, DDRTree also dramatically reduces the computational cost by clustering cells into
different groups while learning the principal graph and performing dimension reduction.

ElPiGraph. ElPiGraph is a scalable and robust method for approximation of datasets with
complex structures, via approximating complex topologies with principal graph ensembles that
can be combined into a consensus principal graph which does not require computing the
complete data distance matrix or the data point neighbourhood graph (Albergante et al., 2020).

_, tissue_backbone, tissue_backbone_length = st.tdr.changes_along_branch(

model=used_tissue_pc,

rd_method="PrinCurve", # ElPiGraph, SimplePPT, DDRTree

NumNodes=30,

epochs=300,

scale_factor=10,

inplace=True,

color="orangered"

)

Once a principal curve or graph is constructed, similar to pseudotime algorithms that are
implemented in Monocle ⅔, we can project each cell in the physical 3D space to the nearest
points on the principal curve or graph. Then we can define a root principal point, such as the
head point of the principal graph, and calculate the geodesic distance along the curve or graph
to define a measure of pseudo-space. We use “pseudo-space” to identify
principal-curve/graph dependent genes similar to pseudotime-dependent genes, as previously
implemented in Monocle 2/3.

Build 3D continuous expression model
To reveal the continuous gene expression pattern across 3D space, we developed a deep
learning framework to map the spatial coordinates to the gene expression with three
consecutive fully-connected networks which use common activation functions such as ReLU or
Leaky ReLU. Then we can use the trained neural network model to perform arbitrary slicing to
reveal gene expression gradients within the 3D space.
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Morphometric vector field and morphometric differential geometry analyses
The concept of vector field, a vector-valued function that assigns a vector for any point in a
space, was originally introduced in physics and used to model the speed and direction of
moving fluid or the strength and direction of magnetic or gravitational forces through the
physical space. A vector field is often visualized as assigning vectors on a grid of points in a
-dimensional space (a grid quiver plot) or a streamline plot. The introduction of RNA velocity,

defined as the time-derivative of the spliced RNA ( ), resulted in low dimensional
representation of local cell fate predictions, visualized with grid quiver plots. Although such
visualizations have been treated as the “vector field”, the development of dynamo finally
enabled the reconstruction of vector fields in functional form. It is worth noting that once we
have an analytical vector field, the differential geometry quantities that we can calculate will
have direct physical meanings.

Preprocessing for morphometric vector field reconstruction. A series of preprocessing
steps are required for obtaining pairs of current 3D spatial coordinates and migration velocity
vectors, required for morphometric vector field reconstruction of organ morphogenesis.
Specifically, in this study, after we reconstructed 3D models of whole Drosophila embryos, we
set the embryo from the first time point as the reference by transforming the coordinates of the
embryo such that the centroid of the embryo is located at origin, where the A-P axis and D-V
axis correspond to the and dimension in the coordinate system respectively. To place
embryo models from later time points to the same coordinate system of the initial reference
embryo model, we align 3D embryos across time points. To overcome the computational burden
of aligning whole embryos, we downsample 2,000 cells from each embryo and use these cells
to perform 3D alignment with PASTE. Next, we rotate and translate the embryos from later time
points based on GPA (generalized weighted Procrustes analysis) to place embryos from later
time points to the same coordinate system. When there are multiple time points, we perform
sequential 3D embryo alignment, similar to that for 2D serial slices. After aligning and
transforming the coordinates of embryos, we are ready to calculate pairs of current 3D spatial
coordinates and migration velocity vectors from the aligned embryo across time. We focus on
analyzing individual organs instead of the entire embryo, which is more practical given the
complexity of the whole-embryo migration pattern and the imperfect data quality. In particular,
we focus on midgut and CNS from E7-9h and E9-10h. We first align all the cells of midgut or
CNS between two time points, again using PASTE, but this time reduce the weight for the
spatial preservation by setting a small to allow significant cell migration and give
more weights on identifying highly similar cells across time points. We next iterate through the
optimal transport matrix and assign each cell from E7-9h to another mostly like cell in E9-10.
Because the cells from two time points are aligned in the coordinate system, we can take the
coordinates from the early time point and the difference between the future time point to the
current time point as velocity vectors or . The pairs of for all cells at a
prior time point can then be used to learn the vector field.
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The st.tdr.cell_directions function from Spateo enables us to learn the mapping from cells from
the early time point to the later time point, as shown below:

st.tdr.cell_directions(

adatas=tissue_adatas,

numItermaxEmd=500000,

spatial_key="3d_align_spatial",

key_added="cells_mapping",

alpha=0.0001,

device="0",

inplace=True
)

Reconstruct morphometric vector field with the sparseVFC algorithm. In order to learn

morphometric vector fields, we consider a set of pairs of 3D physical coordinates of cell

and migration velocities computed from cell alignments based on the optimal

transports , i.e. , where is the number of cells from a prior
time point. Although the migration velocity vector based on the optimal transport alignment is
noisy and discrete, we suppose that the morphogenesis of an organ follows a smooth,
differentiable vector field in 3D space that assigns each cell’s current physical position with a
migration velocity vector , as previously conceptualized (Levin, 2012). In this study, we apply
sparseVFC(Ma et al., 2013b) to reconstruct a morphometric vector field of organ morphogenesis
to robustly learn a vector-valued function , which outputs an migration velocity vector given
any physical coordinate of the cell, based on the observed noisy and discrete pairs of data

.

The final loss function of vector field learning with sparseVFC is as following:

,

where is a parameter accounts for inlier noise, is a weight deciding the importance of the
-th data point in the loss function, is the regularization coefficient, indicates the sparse
reproducing kernel Hilbert space, and the second term corresponds to a vector-valued
regularization term. The vector field function can be evaluated at any point in , as a
summation of Gaussian kernels centered on the so-called “control points”:
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,

where is the number of control points and is the coordinate of the control point. ’s are
coefficient vectors in . And the Gaussian kernel is defined as(Ma et al., 2013b):

.

Overall, the sparseVFC algorithm (Ma et al., 2013b) consists of an E-step and an M-step to
allow modeling of noise velocity (inliers) from the data. See more details at (Ma et al., 2013b;
Qiu et al., 2022) .

To learn the morphometric vector field in Spateo, we will use the st.tdr.morphofiled function as
shown below:

st.tdr.morphofield(

adata=mapping_stage1_adata,

spatial_key="3d_align_spatial",

V_key="V_cells_mapping",

key_added="VecFld_morpho",

NX=np.asarray(stage1_aligned_mesh.points),

inplace=True,

)

Differential geometry analyses of morphometric vector field: Jacobian, divergence,
acceleration, curvature, curl, torsion. Once the analytical morphometric vector field is
reconstructed, we can move beyond velocity to calculate higher-order differentials, including
morphometric Jacobian, divergence, acceleration, curvature, curl, torsion, etc. We start with
introducing Jacobian, a matrix:

.

A Jacobian element will tell you whether the migration velocity of one dimension will
be affected by another dimension . The sum of the diagonal of the Jacobian is divergence:
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.

Divergence can be used to reveal whether the tissue is expanding (positive divergence) or
shrinking (negative divergence). Curl is a quantity measuring the degree of rotation at a given
point in the morphometric vector field and is defined as:

Although the input to the morphometric vector field only includes velocity vectors, we can
leverage 3D manifold to calculate higher-order differentials, such as the acceleration and
curvature, once a vector field is learned. The acceleration is the time derivative of the velocity
and is defined as:

Similarly, the curvature vector of a curve is defined as the derivative of the unit tangent vector (

), divided by the length of the tangent ( ):

.

Another very interesting differential geometry quantities for 3D vector fields, that has discussed
in (Qiu et al., 2022), is torsion, defined as:

,

which can be used to quantify the degree of twisting of a 3D object.

In Spateo, various differential geometry quantities can be calculated as the following:
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key = "velocity" # jacobian, acceleration, curvature, divergence, torsion, curl

st.tdr.morphofield_velocity(adata=stage_adata, vf_key="VecFld_morpho", key_added=key,)

# in addition to morphofield_velocity, all the following function can be used

# morphofield_jacobian,

# morphofield_acceleration,

# morphofield_curvature,

# morphofield_divergence,

# morphofield_torsion,

# morphofield_curl

Supplementary Methods
Analysis of Slide-seq, seqFISH, MERFISH, STARmap and Seq-Scope data

Slide-seq data from the mouse hippocampus
The Slide-seq V2 dataset was downloaded from the Broad Institute single-cell portal
(https://singlecell.broadinstitute.org/single_cell/study/SCP815), in the form of a raw expression
matrix and array of barcode locations. To classify cell types and cellular subtypes, we applied
the RCTD(Cable et al., 2022a) procedure in doublet mode using a single-cell RNA sequencing
reference from the adult mouse brain(Saunders et al., 2018), selecting the highest probability
cell type as the label for each spot. For the spatial colocalization and gene expression similarity
analysis (Fig. S13b), we computed the weighted distance matrix in Euclidean space from the 10
nearest neighbors for each spot, and the weighted distance matrix in gene expression space
from the 30 nearest neighbors for each spot in the space formed by the top 30 principal
components (see Construct cell type colocalization matrix). For the spatially-constrained
clustering (Fig. S13c), we used a resolution of 1.0 and constructed the expression graph from
the 30 nearest neighbors in the space formed by the top 30 principal components, and the
spatial graph from the eight nearest neighbors in 2D space. For the digitization (Fig. S13d), we
specified a bin size of 2, kernel size of 5 and minimum area of 100 after scaling all spatial
coordinates by a factor of 10. For the ligand-receptor interaction analysis (Fig. S13e), all
pairwise permutations of ependymal cells, interneurons and choroid plexus epithelial cells were
considered. To select potential ligands and receptors of interest for each sending and receiving
cell type (respectively), we subsetted to the top 20 highest expressed ligands or receptors, and
further subsetted to the five ligand:receptor pairs simultaneously expressed in the highest
proportion of all cells of the sending and receiving cell type that are spatially proximal (defined
for each spot as being one of the ten nearest neighbors). We repeated for all possible sending
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and receiving cell types to obtain the final list of unique ligand:receptor interactions of interest,
and for each interaction computed the mean ligand:receptor product and p-value using 10000
permutations to obtain all necessary information for the plot.

seqFISH data from the mouse embryo
The processed seqFISH dataset (following segmentation and cell type identification from
clustering in the PCA space) was downloaded from a custom webpage home
(https://crukci.shinyapps.io/SpatialMouseAtlas/) and converted to an AnnData object with
Seurat(Butler et al., 2018) v4.1.1. For the regression model analysis, we used a list of spatially
differentially-expressed genes (DEGs) identified by Lohoff and Ghazanfar et al.(Lohoff et al.,
2022) and recorded in supplementary table 8 of the original publication.

MERFISH data from the mouse hypothalamus
The processed MERFISH dataset was downloaded from Dryad
(https://datadryad.org/stash/dataset/doi:10.5061/dryad.8t8s248). We selected one slice from the
hypothalamic preoptic region, annotated with “Bregma” and labeled as being the -9th section.

STARmap data from the mouse cortex
Details for the raw STARmap dataset can be found in the seminal study (Wang et al., 2018). For
the digitization (Fig. S12f), we specified a bin size of 1, kernel size of 4 and minimum area of 60
after scaling all spatial coordinates by a factor of 100.

Seq-Scope data from the mouse liver
The raw Seq-Scope data was downloaded from the example posted on the Seq-Scope
companion repository, STtools (Xi et al., 2022). Using STtools, we converted data from the base
format to a Seurat object, and to an AnnData object using Seurat(Butler et al., 2018) v4.1.1. For
determining the principal axes (Fig. S13g), we fit a two-component principal components
analysis (PCA) to the spatial coordinates, with the first corresponding to the horizontal axis and
the second corresponding to the vertical axis. To find genes varying along the vertical principal
axis, we fit a general linear model with two degrees of freedom, a q-value threshold of 0.01 and
a negative log-likelihood threshold of -2500. To identify GO term enrichment for identified genes,
we used Enrichr(Chen et al., 2013), querying the mouse database and the “GO Biological
Process 2021” gene set. For the plot (Fig. S13h), we set an adjusted p-value cutoff of 5x10-5.
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