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Abstract

Recent progress in stem cell biology, notably cell fate conversion, calls for novel theoretical understanding for cell
differentiation. The existing qualitative concept of Waddington’s ‘‘epigenetic landscape’’ has attracted particular attention
because it captures subsequent fate decision points, thus manifesting the hierarchical (‘‘tree-like’’) nature of cell fate
diversification. Here, we generalized a recent work and explored such a developmental landscape for a two-gene fate
decision circuit by integrating the underlying probability landscapes with different parameters (corresponding to distinct
developmental stages). The change of entropy production rate along the parameter changes indicates which parameter
changes can represent a normal developmental process while other parameters’ change can not. The transdifferentiation
paths over the landscape under certain conditions reveal the possibility of a direct and reversible phenotypic conversion. As
the intensity of noise increases, we found that the landscape becomes flatter and the dominant paths more straight,
implying the importance of biological noise processing mechanism in development and reprogramming. We further
extended the landscape of the one-step fate decision to that for two-step decisions in central nervous system (CNS)
differentiation. A minimal network and dynamic model for CNS differentiation was firstly constructed where two three-gene
motifs are coupled. We then implemented the SDEs (Stochastic Differentiation Equations) simulation for the validity of the
network and model. By integrating the two landscapes for the two switch gene pairs, we constructed the two-step
development landscape for CNS differentiation. Our work provides new insights into cellular differentiation and important
clues for better reprogramming strategies.
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Introduction

The canonical view of differentiation as an irreversible process

has been largely reshaped since the emergence of induced

Pluripotent Stem Cells (iPSCs) and other lineage conversions

techniques in stem cell biology [1–8]. The success in inducing a

conversion between cellular fates raises several questions [9]: why

is a stable mature cell type retrodifferentiable or convertible? Is

there a universal principle that can explain cellular development,

and is there a fundamental commonality shared by the processes

of normal differentiaton, retrodifferentiation and transdifferentia-

tion? What are then the differences among the three processes?

In fact, a first effort to find a general principle traces back to

Waddington’s pioneering work in embryogenesis which gave rise

to his ‘‘epigenetic landscape metaphor’’ (Fig. S1) for development

[10]. Here the landscape metaphor describes differentiation as a

‘‘down-hill’’ process, which is about a cell ‘‘rolling’’ down from the

pluripotent hilltop (the embryonic stem cells) to the lower valleys

(the terminal differentiated cells), with multiple bifurcations at the

watersheds on the landscape [10]. This metaphor, apparently

lacking physical basis in Waddington’s time, has long been ignored

by experimental biologists until seen a renaissance among them in

the recent years [11,12]. Theorists had revisited this problem at

various times. About twenty years after the first revelation of

Waddington landscape, Thom proposed the catastrophe theory to

explain the branching process in biological system [13]. However,

he failed to find a potential function to construct the landscape.

Kauffman, in a perspective different from that of Thom, starting

from the idea of complex gene regulatory networks (GRNs)

proposed that cell types are attractors in GRNs [14,15]. His work

used an efficient mathematical tool - Random Boolen Network

(RBN). In parallel, more detailed modeling approaches (like

Ordinary Differential Equations or ODEs) were also increasingly

applied in modeling gene regulatory circuits. However, detailed

studies of differentiation remain scanty and theories from

dynamical systems have been applied only recently to the analysis

of gene regulatory networks in development, starting with a single

binary cell fate branching process [16]. Subsequently, the proposal

of ‘‘sequential branching’’ model for hierarchical determination of

cell fates, implemented both as ODEs or Stochastic Differentiation

Equations (SDEs), has led to insights of how gene network
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dynamics govern pancreas development [17]. The re-discovery of

intrinsic stochasticity [18] of gene expression in mammalian cells

as well as developments in the theory of stochastic process has led

to a first formalization attempt of the ‘‘arrow of time’’ (time-

directionality) for cellular differentiation [19]. In parallel, several

studies on constructing the potential landscape for different

biological systems now finally begin to address Thom’s problem

[20,21].

In nonequilibrium systems, an explicit potential function

generally does not exist, and an intuitive solution is to relate

some form of potential to the steady state probability distribution

in stochastic system and decompose the force driving the system

into the gradient part and the curl part. Using such an approach,

Wang constructed the landscape for the cell cycle dynamics and

proposed that the curl force is responsible for the dynamics of a

limit cycle [22]. Of crucial importance, these theoretical develop-

ments led to the first formalization for the one-step of binary

branching in Waddington developmental landscape, generating

myriad implications in explaining development and reprogram-

ming [23]. However, in these models dimension of the develop-

mental process on the landscape is represented by a hypothetical

change of a specific model parameter whose physical validity is not

confirmed. Therefore, it is necessary to study the meaning of this

operation. In addition to Wang’s method, there exists other

constructive and ad hoc methods for landscape construction [24].

Even before Wang’s construction, Ao proposed a transformation

of the SDEs to obtain a potential function for constructing the

landscape, similar to finding an effective flux in the Helmholtz-

Hodge decomposition [25–29]. Based on the intuition from

Lyapunov theory, Bhattacharya developed a numerical framework

for mapping the quasi-potential landscape of a two-gene system

[24]. However, none of them has been used to construct the

landscape based on a real gene circuits governing the development

across two steps of cellular fate branching.

Here we first quantified the dynamic landscapes for the

canonical two-gene fate switch motif under different parameter

changes and demonstrated that some change can correspond to

a development process with its monotonic increase of entropy

production rate (EPR). We then extended previous work to

quantify the transdifferentiation paths in addition to the

previously quantified differentiation and retrodifferentiation

paths on the landscape by using the theory of least action

path. We further applied our theory to cell differentiation in the

central nervous system (CNS) as an example to construct the

two-step developmental landscape. The CNS was chosen

because of the extensive researches about neuronal cell

differentiation, which have accumulated abundant experimental

data on gene regulatory circuit suited for modeling [30].

Intensive theoretical efforts in developmental neurobiology also

have persisted for the past thirty years [31]. A considerable

proportion of those work have concentrated on signaling

cascade and morphogenesis in the neural development. How-

ever, GRN has dominant influence when it comes to the

differentiation from nervous precursor to three CNS cell types

(neuron, astrocyte and oligodendrocyte). Thus here we mainly

model gene expression dynamics underlying CNS differentia-

tion, first through qualitative assessment of a core regulatory

network, followed by comparing the stochastic simulation (which

was also used to explore the optimal cocktails for reprogram-

ming from astrocyte or oligodendrocyte to neuron) with

microarray data to confirm the model and network’s validity.

By gluing the landscape for two fate-switch motifs, we finally

constructed the two-step landscape which has never been done

before to our knowledge. Our work provides new insights to

general principles about the mechanisms of retrodifferentiation

and transdifferentiation.

Materials and Methods

Two-gene Landscape
Recently a large range of cellular fate-switch regulator pairs,

characterized by their cross-inhibition and self-activation, are

confirmed [32]. This common gene pair is increasingly regarded

as a general network design for the cellular fate bifurcation [33]

(Fig. 1a). In order to introduce the developmental landscape idea

and demonstrate how a landscape can formulate the global

developmental (also the reprogramming) processes mathematically

and physically, we studied the canonical two-gene module (Fig. 1a)

as our first step. To characterize dynamics of this two-gene

network, we assumed that autocatalysis and mutual-inhibition of

genes are independent (their effects are thus additive), and thus

used the following standard kinetic model [16,23]:

dx1

dt
~

a1xn
1

Snzxn
1

z
b1Sn

Snzxn
2

{k1x1~F1(x1,x2)

dx2

dt
~

a2xn
2

Snzxn
2

z
b2Sn

Snzxn
1

{k2x2~F2(x1,x2)

ð1Þ

in each of the above two nonlinear equations the first term

represents the contribution to rate of change in gene expression

from autocatalysis where the transcription and translation

processes are lumped into one step; the second term represents

that of inhibition from another gene and the last term first-order

degradation. The first and second terms are implemented in the

form of Hill equation with n = 4, but do not necessarily imply the

cooperation between regulators [34]. Basically, we set

a1~a2~a~1,b1~b2~b~1,k1~k2~k~1, and S = 0.5 to en-

sure simplicity and symmetry of the model. The rate of change in

gene expression can also be regarded as a force driving the gene

network. In vector form, we obtain:

dx=dt~F(x)~½F1(x1,x2),F2(x1,x2)� ð2Þ

In order to obtain a global and intuitive understanding of the

development process described by the above kinetic equations of

two fate-switch genes, a developmental landscape under the concept

of Waddington landscape is needed [23,35]. Until recently, there

are three different approaches available for landscape construction

[23,24,26]. In the following we derived the formula for landscape

construction from Wang’s framework [23], which relates the quasi-

potential to the steady state probability of a biological stochastic

system. The mathematical basis of two other methods [24,26] and

the corresponding two-gene landscapes are included in the

supporting information (Fig. S2).

In nonequilibrium system with Nw1 dimensions, it is not easy

to obtain a potential function U which satisfies +U~F(x): Since

the intrinsic and extrinsic noise exists universally in biological

system, an intuitive solution is to relate some form of potential

(quasi-potential) to the steady state probability distribution. The

above equations under noise influence can be related to a

continuous stochastic model, whose probability distribution

evolution is determined by the diffusion equation.

According to the probability conservation law (The probability

(P(x1,x2,t)) change at point (x1,x2) equates to the sum of the flux

J(x1,x2,t) flows in/out of that point), we obtain the following

equation:

Landscape for Central Nervous System Developement
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LP

Lt
z+:J~0 ð3Þ

where probability flux is defined as J~FP{D+P based on the

following Fokker-Planck (FP) equations:

LP(x1,x2,t)

Lt
~{

L
Lx1

½F1(x1,x2)P�{ L
Lx2

½F2(x1,x2)P�

z
L2

Lx2
1

½D(x1,x2)P�z L2

Lx2
2

½D(x1,x2)P�
ð4Þ

where D is the diffusion matrix which is set as a constant (which is

basically 0.1) in our simulation for simplification.

Figure 1. The two-gene developmental landscapes and entropy production rate (EPR) evolution under parameter a or k change.
(a)Two-gene model of cellular development with self-activation and mutual-inhibition. The results illustrated in following rows are based on this
model. First row: The landscape can be equally constructed by changing different parameters in Eq. 1. X-coordinate corresponds to the gene
expression of x1 and x2 after a coordinate-transformation (see main text) while the ordinate coordinate corresponds to the parameter change, which
is used to model the process of development. The U-coordinate describes the quasi-potential. The center valley on the landscape corresponds to
stem cell type while the two side valleys correspond to two different terminal cell types. (b) a-change landscape constructed by change of parameter
a with other parameters fixed. The same treatment is performed for the subgraph c. (c) k-change landscape Second row: The EPR increases
monotonically along the change of parameter a or k, supporting the idea that parameter change during landscape construction can correspond to a
self-organization thus the development process. (d) EPR vs. a decreases from 1.5 to 0. (e) EPR vs. k increases from 1 to 1.5. Basic parameters are set as
a1~a2~1,b1~b2~1,k1~k2~1 and S~0:5,n~4,D~0:1.
doi:10.1371/journal.pone.0049271.g001

Landscape for Central Nervous System Developement
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In steady state, the LPss

Lt
~{+:Jss~0 but probability flux Jss

itself doesn’t need to be zero, therefore,

F~Jss=PsszD:+Pss=Pss

~Jss=Pssz({D:+({ ln Pss(x,t??))):
ð5Þ

Following the Boltzmann law in equilibrium system, the steady

state probability can be converted into the dimensionless quasi-

potential according to:

U(x)~{ln Pss(x,t??) ð6Þ

Then,

F~Jss=Pssz({D:+U)

~FczFg:
ð7Þ

The force driving the nonequilibrium system is thus decomposed

into two parts: the gradient term Fg (relates to the steady state

probability) and the curl term Fc (relates to the divergence-free

flux).

Even though the potential in nonequilibrium or equilibrium

system relates to steady state probability distribution in a similar

way, the dynamics of the nonequilibrium system is also

determined by the curl force Fc in addition to the gradient

force Fg. The obtained quasi-potential is then used to map

stage-specific and whole dynamic landscape (Fig. 1b, c & Fig.

S3A, B).

Figure 2. The development, retrodifferentiation and transdifferentiation paths over the landscape. As indicated in the landscape, the
retrodifferentiation path is distinct from the developmental path. Transdifferentiation path (while a~0) has an intriguing behavior, which directly
traverses from the source valley to the target valley without change of parameter a. The corresponding dominant transdifferentiation paths on the
stage-specific landscape are nearly identical (Shown in the inset b). The arrow indicates the direction of the dominant path. A, B, C are symbols for
stem cells and two different terminal cell, respectively. (a) Development (from A to B/C, red color lines), retrodifferentiation (from B/C to A, yellow
color lines) and transdifferentiation (between B and C, magenta color lines) paths over a-change development landscape. (b) The forward and
backward transdifferentiation paths on the stage-specific landscape at a~0.
doi:10.1371/journal.pone.0049271.g002

Landscape for Central Nervous System Developement
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Following Wang’s method, the change of parameters is used to

represent the dynamic process. By fixing parameters a=b=k=S for

F1,F2, we calculated U, the quasi-potential for each point in the

gene expression state space of x1,x2 from the above equation, and

then constructed the stage-specific landscape, which is defined

because the parameters in the model are constants thus we can

relate the landscape to a dynamic stage. The stage-specific

landscape was further manipulated to construct the whole

dynamic landscape. We rotated anticlockwise the x1,x2 coordi-

nates and the landscape 45u, followed by extracting the lowest U

for each value at the new coordinate X (X~x1 cos p
4
{x2 sin p

4
)

which was then used to represent the potential for a specific stage.

We then systematically changed one of four parameters to

represent the whole dynamic process and quantified the corre-

sponding stage-specific landscape. After combining a serial of that

set of potential, we mapped out the whole dynamic landscape. The

EPR (Entropy Production Rate) is used to explore the relationship

between change of a=b=k=S and the development process (Fig. 2d,

e & Fig. S3C, D). An important characteristic of a self-

organization system (including the living system) is that it subjects

to the principle of maximum entropy production rate (MEPR),

that is the EPR will increase as the system evolutes into more

ordered states (corresponding to the process that cells develop into

specific mature cell types) [36]. Therefore, we assumed that the

monotonically increase of EPR for parameter change in the

landscape construction can be related to a developmental process.

The formula of EPR is defined as [37]:

ep~{

ð
(kBT+lnP{F):Jdx ð8Þ

where kB is the Boltzman constant. In the dimensionless condition,

we can use kBT~1. For the dynamic landscape where the EPR

increases monotonically along the change of parameters on the

landscape construction, they are regarded as the ‘‘verified

development landscapes’’.

Different cell types can be associated with different valleys

(attractors) on the landscape [14]. Under the principle of least

Figure 3. The developmental landscape and dominant paths under different noises. As the noise increases, the developmental landscape
becomes flatter while the dominant paths on the landscape become increasingly straight. Thus the cell types become less stable and the
development (and also the retrodifferentiation and transdifferentiation) process(es) becomes more flexible. The same conclusions apply to k-change
landscape (Here it is the a-change landscape). This graph demonstrates the importance of stochasticity in cellular development. (A–D) Landscape and
dominant paths when D~0:2, D~0:3, D~0:5 and D~1, respectively. Red color lines: development paths; yellow color lines: retrodifferentiation
paths; magenta color lines: transdifferentiation paths.
doi:10.1371/journal.pone.0049271.g003
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action, the dominant paths between the stem cell type valley and

terminal cell type valleys can be quantified [23]. These dominant

paths are regarded as the biological development (paths from stem

cell valley to two terminal cell valleys), retrodifferentiation (paths

from terminal cell valleys to stem cell valley) and transdifferentia-

tion (paths between two terminal cell valleys) processes (Fig. 2).

The dominant paths were obtained by minimizing the following

action of the paths, for which we used the simulated annealing

algorithm [23,38].

SHJ~
XN{1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Eeff zV (n))=D

q
Dln,nz1{

1

2D
F ’l(n)Dln,nz1zlP ð9Þ

The theoretical details about how to derive the above equation

can be referred to Wang’s papers [23,38]. To find the

transdifferentiation paths, two searching methods were used.

The first one was operated under the symmetrical change of

parameter a1 and a2, while the other was operated under

asymmetrical change of parameter a1 and a2, which means that

we fixed a1 and changed a2 if we wanted to transdifferentiate the

cell from x1 high expressed cell type to x2 high expressed cell type,

or vice versa.

We further studied the effects of noise over the landscape

topography and the dominant paths by varying the noise ratio

from 0.1 to 1 (Fig. 3).

Minimal Network Responsible for CNS Differentiation
The commitment of neuron lineage depends on the lateral

inhibition, in which the prefated neural progenitors inhibit the

neurogenesis of the neighboring cells through the Delta{Notch
pathway. Proneural genes, like Mash 1, in the downstream of

this pathway, are crucial for neural induction [39]. Their

inhibitors, such as Hes 5, on the other hand, are glia inducers

[39]. However, the key regulators which are in charge of the

astrocyte-oligodendrocyte fate switch have not been fully

identified, excepting limited reports like decreasing of Scl leads

to Olig 2 high expression, and results in the formation of

oligodendrocyte. For the purpose of modeling, we need to

construct a minimal network for CNS differentiation by

integration of scattered evidences available. We focus on the

master genes, and do not consider the signaling molecules and

influences from cellular environment in our model, as stated in

the section of introduction. By doing so, we collected genes

responsible for CNS fate decision and lineage markers genes. In

particular, we started the network construction from finding

Mash 1, Brn 2, Zic 1, Hes 5 and Olig 2’s upstream regulators

or targets because they are the five factors used in the lineage

conversion from fibroblast to functional neurons, implying their

importance in the CNS differentiation [5].

The curated minimal network responsible for the differentiation

of CNS is shown in Fig. 4a which is characterized by the coupling

of two-step fate decision. References supporting this network are

summarized in Tab. S1.

Model the GRN Dynamics of CNS Differentiation
We model the network in Fig. 4a as previous work [17]. The

formula of gene expression change rate in the SDEs (Eq. 11) for

the neural differentiation network contains three terms. The first

term describes the gene’s interaction with other genes (or itself),

which is implemented in the form of a customary Hill equation.

To reduce the computational complexity for high dimension

system while focus on the qualitative behavior, we minimize the

number of rate constants and combine the activation and

repression effects into a single term. The expression of positive

regulator will appear in both of the denominator and numerator

of the regulated gene’s equation; while for a negative regulator,

it will appears only in the denominator. We multiply their

expression to model the cooperative regulations between

different genes. a,ae are used to represent different levels of

production rate. The second term of the equations reflects first

order degradation. To capture the gene expression stochasticity,

we also added a Gaussian white noise as the third term. The

noise is defined as elsewhere,

vji(t)w~0

vji(t)jj(t
0)w~2Dijd(t0{t)

ð10Þ

where the first equation means that the ensemble average of the

noise is zero and the second equation describes the indepen-

dence of the noises between different time points, implying a

Wiener process. The set of SDEs for the twelve genes in Fig. 4a

is defined as:

Enforced decrease of Pax 6 :

_xx1~{c:x1zj1(t)

Feedback from terminal cell to CNS progenitor gene Pax 6 :

_xx1~as �
1

1zgn � (xn
5zxn

10zxn
12)

{k:x1zj1((t)

Mash 1 : _xx2~a
xn

1

1zxn
1zxn

6

{k:x2zj2(t)

Zic 1 : _xx3~ae

xn
2

1zxn
2

{k:x3zj3(t)

Brn 2 : _xx4~ae

xn
2

1zxn
2zxn

8

{k:x4zj4(t)

Tuj 1 : _xx5~ae

xn
3zxn

4zxn
11

1zxn
3zxn

4zxn
11

{k:x5zj5(t)

Hes 5 : _xx6~a
xn

1

1zxn
1zxn

2

{k:x6zj6(t)

Scl : _xx7~ae

xn
6

1zxn
6zxn

8

{k:x7zj7(t)

Olig 2 : _xx8~ae

xn
6

1zxn
6zxn

7

{k:x8zj8(t)

Stat 3 : _xx9~ae

xn
6
:xn

7

1zxn
6
:xn

7

{k:x9zj9(t)

A1dh1L : _xx10~ae

xn
9

1zxn
9

{k:x10zj10(t)

Myt1L : _xx11~ae

xn
8

1zxn
8

{k:x11zj11(t)

Sox 8 : _xx12~ae

xn
8

1zxn
8

{k:x12zj12(t)

ð11Þ

The parameters of the above equations in our simulation are set

as: c~0:02,n~4,g~0:1,a~4,as~2:2,ae~3,k~1. Several other

sets of parameters were implemented and similar qualitative results

were obtained. To represent the negative feedback of the mature

terminal cells back to the precursor gene Pax 6, for which there is

functional but no molecular evidence, we enforced an exponential

decrease of Pax 6 in our model (the first equation for the change

of Pax 6). However, we obtained qualitatively similar conclusion

Landscape for Central Nervous System Developement
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when the differentiation process was modeled by negative

feedback from terminal cells to the x1 (the second equation for

the change of Pax 6, Fig. S5A, B). The equations for the two

three-gene motifs (x1{(x2,x6) and x6{(x7,x8)in Fig. 4a) are the

core of the CNS development system, which was further used to

constructed the CNS developmental landscape.

Verification of the model by SDEs simulation. After

searching the GEO [40], three datasets were retrieved as the

reference for the stochastic simulation (GDS3442, GSE10796,

GDS2379 [41–43], which study neurogenesis, astrogenesis and

oligodendrogenesis, respectively). For each dataset, we first

normalized the expression levels of specifically chosen genes by

their maxima in the time series. By doing so, we can quantitatively

demonstrate the expression pattern during neurogenesis which can

be used to compare the simulated gene expression dynamics

(Fig. 5a & Fig. S6–7A). We also compared gene expression level of

marker genes during three different CNS cell type genesis (Fig. 5b

& Fig. S6–7B). We made single cell simulation (one run of

simulation) with Eq. 10 and compared the simulation dynamics

with that of the corresponding genes from microarray datasets

(Fig. 5c, Fig. S5 & Fig. S6–7C).

Central Nervous System Developmental Landscape
It is impossible to visualize a landscape of minimal CNS

differentiation network which has twelve genes. Therefore we

made a reasonable simplification: we mapped the landscape based

on gluing two binary fate-decision modules’ landscapes since they

are the master regulatory pairs responsible for CNS cell types’ fate

commitment and the downstream genes don’t have impact on the

upstream genes due to the fact that we ignored the feedback from

the downstream genes in our simplified model. Each fate-switch

landscape was constructed for the corresponding three-gene

module in a similar way as the previous two-gene developmental

landscape construction (the remaining nine dimensions were used

as the parameters of the module’s equations).

In constructing the whole landscape, the expression level of

Pax 6 (x1) was used to represent the development stage (Fig. 6a),

consequently it can be regarded as the bifurcation parameter of

binary fate commitment. We first visualized the bifurcation

diagram for the motifs of Mash 1{Hes 5 and Scl{Olig 2 and

identified the ranges of bifurcation parameter (x1) for the first and

the second bifurcations (Fig. 6a). The range of expression level of

Pax 6 for the first bifurcation is about from 4.5 to 2.0 while the

second bifurcation is about from 2.0 to 0.9. The cut-off values of

2.0 and 0.9 are the values where the first and the second

bifurcations reach the most remarkable region (Line I and II on

Fig. 6a), respectively. Therefore, we assumed that at Pax 6~2:0
the neuron matures and glia forms from which the second-step

differentiation starts while at Pax 6~0:9 the astrocyte and

oligodendrocyte mature and the second-step differentiation stop.

In order to construct the two-step CNS developmental landscape,

we then mapped the first and the second-step switch genes’

landscape according to the parameter ranges of bifurcation.

Specifically, we used the decrease of expression level, from 4.5 to

2.0, of Pax 6 or x1 (similar to the parameter a in two-gene

landscape) to represent the first step differentiation, then calculated

Figure 4. Manually-curated minimal GRN for central nervous system differentiation and network design explaining differentiation.
(a) The manually-curated minimal network for CNS differentiation. The network mainly consists of two steps of two mutually-inhibited fate
commitment genes (boxes with red color lines): the first step determines the commitment of neurons or glia where the second step determines that
of astrocyte and oligodendrocyte. From left to right, the three boxes below the fate switch circuits includes neurogenesis, astrogenesis and
oligodendrogenesis related transcription factors and markers, respectively. Real lines are literature confirmed regulations while dotted lines are
proposed regulation in CNS development (See Tab. S1). The skeleton of this network includes two coupled three-gene networks in subgraph b. (b)
The basic motif for the CNS differentiation network where one progenitor gene (A) activates the expression of two mutual-inhibited downstream
genes (B and C). This motif (with the self-activation) also corresponds to our proposed network design for explaining differentiation where gene A
represents OKSM while B and C two distinct fate commitment genes.
doi:10.1371/journal.pone.0049271.g004
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the quasi-potential of Mash 1 and Hes 5 state space at different x1

by solving corresponding FP equation and finally mapped the first-

step developmental landscape (Fig. 6b). Similarly, we used the

range from 2.0 to 0.9 of x1 to represent the second-step

differentiation. We then found the attractor states of Hes 5 high

expression at each x1 value and substituted the expression value of

Hes 5 at each attractor into the equations of the second-step fate

determinants (Scl and Olig 2) and finally mapped the second-step

developmental landscape after solving the FP equation (Fig. 6c).

We used an ad hoc coordinate system to integrate the two

landscapes into one. When the ordinate coordinate is between 4.5

and 2.0 (expression level of Pax 6), the X coordinate corresponds

the transformed (similar to the two-gene landscape transformation)

gene expression of Mash 1 and Hes 5 and the corresponding

region (Region A in Fig. 6d) represents the first-step landscape.

While the ordinate coordinate is between 2.0 and 0.9, the left part

of X coordinate corresponds to the extending value of the previous

coordinate while x1~2:0 (Region B in Fig. 6d). The right part

corresponds to the compressed Scl and Olig 2 coordinate system

(Region C in Fig. 6d, see explanation below).

In order to glue the first-step development landscape (region A

in Fig. 6d), the extending neuronal landscape (region C) and

second-step development landscapes (region B), three specific

processes are involved. Firstly, the attractors on the joining of the

two landscapes (while a~2:0) are aligned. In practice, the average

height of the second-step landscape (including that of the joining

attractor) can be adjusted through the size of mesh used in

calculating the underlying probability with smaller size a larger

average probability (P) per unit area and thus lower height

(u~{ln P) for the landscape (The probability used in calculating

the landscape amounts to 1). By adjusting the size of mesh, we

obtained a similar potential for the joining attractors. Secondly,

while fixing the joining attractor, the second-step landscape can be

stretched or compressed horizontally to maximally matching the

boundaries near the two joining attractors since the X-coordinate

is ad hoc and that of first and second-step doesn’t have direct

relationship. Lastly, for the ‘‘bumps and cliff’’ remains between the

joining of regions A, B and C, we first cut off parts of the boundary

of the second-step landscape with high altitude and then used

interpolation to create a smooth transition between different

regions. This is warranted for that the boundaries with very high

altitude have very low probability (which in reality is possibly of

nonexistence) thus can be disregarded and kept as spaces for the

interpolation. On the other hand, the barrier between different

valleys obtained after interpolation is enough to describe the

stability of cell types and the difficulty of transdifferentiation

between neuron and astrocyte (or oligodendrocyte).

Results

Two-gene Developmental Landscape
We generalized Wang’s framework to further quantify the

landscape under other parameter change and to explore whether

or not the change can relate to a development process.

We found that, while fixing other parameters, varying of

parameters: b (a~0) (the measure of inhibition), k (the measure of

degradation strength), S (the reaction threshold constant), in

addition to parameter a (the measure of self-activation strength) in

Wang’s case [23], we can map similar landscapes (Fig. 1a, b and

Fig. S3A,B). The b-change landscape is different from others in

that the landscape (Fig. S3A) undergoes a bifurcation from one

attractor to two attractors analogous to type I bifurcation in ref.

[16].

Previously Wang’s work [23] demonstrated that the change of

parameters leads to the bifurcation. Is this reasonable to represent

the developmental process on landscape construction? Do they

have certain physical relevance with the development process? We

were thus motivated to explore the relationship between the

change of parameters and the entropy production rate (EPR, Eq.

8). In Fig. 1d, e, we show that the EPR increases monotonically

along the corresponding change of a=k in constructing the

landscape. Therefore, we demonstrate that the change of a=k in

the landscape construction may be applicable to characterize the

developmental process. When parameter b increases from 0 to 1.5,

however, the EPR does not always increase monotonically (Fig.

S3C). The starting non-monotonic region may offer a physical

explanation on the idea that type-I bifurcation in ref. [16] is

possibly not suitable for cell differentiation. Interestingly, the EPR

decreases monotonically along the change of parameter S from 0

to 1.5 (Fig. S3D). We speculated that this decrease of S may

correspond to the carcinogenesis because that, according to the

MEPR, the system will evolve from terminal expression states to a

promiscuous expression state which is a well-known phenomenon

in the carcinogenesis (Fig. S3B).

Quantify the Dominant Developmental,
Retrodifferentiation and Transdifferentional Paths on
Two-gene Landscape

The center valley (A in Fig. 2a) on the verified development

landscape corresponds to stem cells while the side valleys (B and C

in Fig. 2a) correspond to two different terminal cell types. We

quantified the dominant paths between valleys of different cell

types. Similar to previous results [23], we first found that the

development (paths from center valley A to marginal valleys B or

C in Fig. 2a) and retrodifferentiation paths (paths from marginal

valleys B or C to center valley A) over the landscape are distinct

and irreversible. We then extended previous work [23] to quantify

the dominant paths between two terminal cell types on the

landscape. We assume them as biological transdifferentiation paths

(paths between two marginal valleys B and C). By implementing

the two searching methods introduced in the section of Material

and Method, we reached a consistent dominant transdiferentiation

path between two mature cell types (a~0), which indicates that

the optimal approach to transdifferentiate needs to maintain the

parameter staying at a~0 during the whole process. The

transdifferentiation path is direct and just transverses from the

starting valley on the landscape and directly moves towards the

target valley without firstly moving towards the stem cell valley

(Fig. 2). Moreover, the corresponding dominant paths between

valleys B, and C over the developmental stage-specific landscape

(parameter a is fixed to 0) are also nearly identical (Fig. 2b). These

results drive us to speculate that the trandifferentiation may be

reversible. However, at certain condition, we found that the

transdifferentiation paths over developmental landscape will

gradually move forward to the stem cells at first, then downward

to the target cell type (data not shown). Applying these discoveries

into the biological situation, it would imply that the optimal

transdifferentiation strategy may depend on the source and target

cell types as well as the the microenvironment where they locates

in: some conversions need to firstly converse into the precursors

then to the target cell types, while in extreme situation (here a~0
or no autocatalysis of gene expression) a direct phenotype

conversion would be optimal.

We then varied the intensity of noise for whole dynamic

landscape and found that the shape of landscape and the direction

of dominant paths is apparently influenced by the intensity of gene

expression noise (Fig. 3). When the noise of gene expression

Landscape for Central Nervous System Developement
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increases, the landscape becomes flatter and the barrier between

different valleys becomes lower, thus the cell types become less

stable. Accordingly, we found that the reprogramming and normal

development paths become increasingly straight when the noise of

the system increases from 0.1 to 1. Biologically, it indicates that the

development, reprogramming processes could be accelerated

when the gene expression stochasticity is magnified. In contrast

to Waddington’s perspective about a static development land-

scape, this result could provide a dynamic view of the landscape

[10,12,35].

Similar to previous studies, we further found that the mean first

passage time (MFPT) for escaping from one valley decreases as

noise increases [22] (Fig. S4), in line with the idea about the

influence of the magnitude of developmental fluctuations due to

the stochasticity of gene expression in ref. [18,44,45] (The

equation of MFPT and the corresponding graph is included in

the supporting information).

Core CNS Developmental Network
Previous construction of development landscape only demon-

strated on a general two-gene module which doesn’t consider

multiple bifurcation of a specific biological system. In order to

demonstrate the feasibility of the quantification of a landscape for

a complex development process, we attempted to construct the

developmental landscape for central nervous system development,

starting from establishing a minimal gene regulatory network. In

order to prove the validity of regulatory network as well as the

model, we first implemented SDEs simulation and compared the

simulated gene expression dynamics with microarray datasets. We

also used the set of SDEs to simulate the transdifferentiation from

oligodendrocyte/astrocyte to neurons and found that the simula-

tion result matches conclusions drawn from the transdifferentia-

tion paths of the two-gene landscape model. The two-step

landscape was then constructed based on the confirmed SDEs of

the coupled two fate switch circuits.

The minimal CNS differentiation network is shown in Fig. 4a.

We notice that this network consists of the same two motifs

Figure 5. Results of stochastic simulation matches qualitatively public microarray datasets for neurogenesis. Regulators for
neurogenesis and marker genes of three cell types were chosen to compare the result of stochastic simulation and microarray data. (a) Microarray
data for regulators and markers of neurogenesis from E9:5 to E13:5. Each box represents a specific time period, in which there are five duplications
of samples. Diagrams in row I and II shows the gene expression dynamics for differentiation inducer and the first-step switch genes, and neural
related regulators/markers, respectively. The expression level of each gene is normalized by the corresponding maxima in the time series. (b) Relative
expression dynamics of three cell types marker genes in neurogenesis by microarray data. Here the expression Aldh1L1, MytlL and Sox 8 is much
lower than that of Tuj 1, thus is shown near the horizonal axis. This diagram corresponds to the low expression of Aldh1L1, MytlL and Sox 8 in the
late part row 3 in subfigure c. (c) Single cell simulation for neurogenesis where diagrams in row I and II matches quantitatively with the gene
expression dynamics of the diagrams in the according rows of subgraph a.
doi:10.1371/journal.pone.0049271.g005
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(Fig. 4b), where there is a common upstream regulator positively

regulating two mutual-inhibiting genes, a typical motif found in

extensive network analysis in morphogenesis [46]. This motif is

also used to explain the mechanism for stemness maintenance and

reprogramming.

Confirmation of the Minimal Network and Model for CNS
Differentiation by Stochastic Simulation

We found that, when assigning Pax 6 a high expression level

and other genes low expression level at the beginning of the

simulation, genes expressed sequentially in the network hierarchy

in our stochastic simulation model, and captured the ordered

Figure 6. The two-step CNS developmental landscape. To map the two-step landscape for CNS differentiation, we first calculated the
bifurcation diagram of fate-switch genes using the gene expression of Pax 6 to represent the development process. Based on this bifurcation
diagram, we identified the parameter region for the first and the second step development. Then we calculated and glued the first-step and the
second-step landscape in an ad hoc coordinate system to obtain the two-step developmental landscape, which is similar to the original Waddington’s
landscape. (a) The bifurcation diagram for two fate-switch genes motifs under the change of Pax 6. Here we only showed the stable fixed point. Line I
indicates the boundary for the first-step differentiation, which is used in constructing subfigure b (the first-step landscape). Line II indicates the
boundary for the second-step differentiation, which is used in constructing subfigure c. The cut-off values of 2.0 and 0.9 at the line I and line II are the
values where the bifurcation reaches the largest region and that the corresponding differentiation step is assumed to be completed. (b) The first-step
landscape for Mash 1-Hes 5 motif which describes the CNS precursors develops into neurons and glia. The left neuron valley of the landscape will be
extended during the construction of CNS development landscape. (c) The second-step landscape for Scl-Olig 2 motif which describes glia develops
into astrocyte and oligodendrocyte. The mesh size in mapping this landscape can be adjusted to align the joining attractors from first and second-
step landscapes. This landscape was further compressed and its left and right boundaries were cut off during following construction of the CNS
development landscape. (d) The two-step CNS developmental landscape. This landscape is constructed by gluing the first and the second step
development landscape and the extending landscape, respectively symbolized as region A, region B and region C. Three specific steps were involved
during the gluing of the CNS development landscape. The dominant paths are also shown on the landscape. Yellow color lines represent the
development processes while red color lines represent the retrodifferentiation processes. The transdifferentiation paths need firstly move back to the
CNS progenitors and then downward to the target cell types (Data not shown). Thus the transdifferentiation paths can be regarded as a combination
of retrodifferentiation and dedifferentaition processes.
doi:10.1371/journal.pone.0049271.g006
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developmental dynamics. Our result shows that the gene

expression levels of Mash 1 and Hes 5 will first increase to a

certain threshold, then follow a random switch between the

expression of Mash 1 and Hes 5 in the opposite direction which

respectively commit to neuron or glia cellular fate, indicating a

pitchfork-shape bifurcation in development (Fig. S5A). A similar

bifurcation also appears for Scl and Olig 2 gene expression

dynamics when the second step development occurs and cells

commit to astrocyte or oligodendrocyte (Fig. S5A).

We found that our results qualitatively match the public

microarray data. Taking single cell simulation of neuron

differentiation as an example, the simulation agrees with public

microarray data (GDS3442) [41] in which the progression from

undifferentiated neuron precursor at E9:5 to neurogenesis at

E11:5 and to maturation of neurons at E13:5 was measured

(Fig. 5). In the microarray data, the expression of Pax 6 decreases

constantly, while that of Mash 1 and Hes 5 first increases from

E9:5 to E11:5. Then, Hes 5 decreases dramatically from E11:5 to

E13:5 while Mash 1 decreases only slightly in this time period.

Our simulation shows the similar expression dynamics with a clear

bifurcation between Mash 1 and Hes 5 (Fig. S5A). Our simulation

is further confirmed by the microarray data from E9:5 to E13:5,

which shows that expression of markers of other cell types is much

lower comparing to the expression of Tuj 1. The stochastic

simulation of the gene expression dynamics for astrogenesis and

oligodendrogenesis also qualitatively agrees with the correspond-

ing datasets of microarray experiments, as shown in the supporting

information (Fig. S6–7).

We next explored the optimal ‘‘cocktails’’of genes to be

ecotypically expressed and their order under manipulation for

converting astrocyte/oligodendrocyte to neuron [17]. By testing a

serial of simulation, we found that the conversion could occur with

higher efficiency when we activated sequentially Mash 1, Pax 6,

followed by inhibiting Scl or Olig 2 and Hes 5. We further found

that oligodendrocyte/astrocyte will firstly dedifferentiate into CNS

precursor then redifferentiate into neurons during our transdiffer-

entiation simulation (Fig. S5C). With strong enforced activation of

Mash 1, a direct transdifferentiations into neuron occurs in the

simulation (data not shown). Our model also suggests that the cell

types can automatically inter-converse between three cell types

under large noise influence (data not shown). All the above three

results agree with conclusion from the two-gene landscape model.

Central Nervous System Developmental Landscape
Based on the above stochastic simulation confirmed model and

network, we herein constructed the CNS developmental land-

scape. Of our knowledge, this is the first physical realization for

constructing a two-step developmental landscape for a biological

system.

Fig. 6b shows the first-step developmental landscape for Mash 1
and Hes 5 where the center valley corresponds to the CNS

precursors, the left valley corresponds to the neuron cell type and

the right valley corresponds to the glia cell type. Fig. 6c shows the

second-step developmental landscape for Scl and Olig 2 while the

center valley corresponds to the glia, the left valley corresponds to

the astrocyte and the right valley corresponds to the oligodendro-

cyte. Using an ad hoc coordinate system and gluing technique (see

Material and method), we obtained the two-step development

landscape by integrating the first and the second-step develop-

mental landscapes (Fig. 6d). Our two-step CNS developmental

landscape is similar to the original Waddington landscape (Fig. S1)

with a two-step sequence of bifurcations that generates multiple

valleys.

Under the same framework for the quantification of dominant

paths over the two-gene landscape, we further explored the

dominant paths for the development from the CNS progenitors to

neuron/glia and from glia to astrocyte/oligodendrocyte, and the

corresponding retrodifferentiation paths. Similar to the results of

those from the two-gene landscape, the normal development paths

on the CNS developmental lanscape are distinct from the

retrodifferentiation paths. In addition, by using the searching

method applied in the two-gene network (the Pax 6 corresponds

to the parameter a in two-gene landscape), we found the dominant

transdifferentiation paths on the landscape need firstly move back

to the CNS progenitor then downward the target terminal cell

types (data not shown). These discoveries are similar to the results

from the stochastic simulation where the reprogramming cocktails

of genes will firstly reprogram the source cell types into CNS

progenitors then into the target cell types.

Discussion

The studies on the two-gene landscape provide a few interesting

insights into the mechanism of development, retrodifferentiation as

well as transdifferentiation.

We demonstrated that the development and retrodifferentiation

paths are irreversible because the dominant paths don’t follow

gradient since there is an additional curl force determining the

dynamics of the system [23]. Such an irreversibility of forward and

backward paths may be a common phenomenon in the non-

equilibrium systems, like the living organisms. This conclusion can

be extended to embrace recent findings that the genomic gene

expression dynamics during developmental fibroblast formation is

distinct from that in the iPSCs induction [47].

Intriguingly, a direct transdifferentiation path without passing

through the medial precursor states appears on the landscape at

certain development stage (a~0). Meanwhile, in certain range of

parameter a, the transdifferentiation path will firstly move toward

the stem cell valley and then to the target cell valley. These results

may well associate with previous ideas (as also shown in our

transdifferentiation simulation) that the transdifferentiation can

happen through firstly dedifferentiating into precursors, then

redifferentiating into the target cells. At extreme situation, a direct

phenotypic conversion is applicable. It can be related to recent

findings that, under additional signal induction, the direct

conversion between fibroblast and neural progenitor has a higher

efficiency than that by first reprogramming to the stem cells,

followed by instructing to target cell types [48].

Our work demonstrates the importance of gene-expression

stochasticity in development. With higher noise term in the SDEs

system, the cell types can automatically inter-converse (data not

shown); similarly, a larger diffusion matrix D will flatten the

landscape, and lead to straight dominant developmental/retro-

differentiational paths and convenient transition between different

valleys (cell types) over developmental landscape. These results

reflect previous considerations that the reprogramming efficiency

may be improved when biological noise processing mechanism

(Proteasome or Wnt signal pathway, et al.) is enhanced [49].

In practise of iPSCs, the somatic cells are induced by adding

ecto-expressing factors (OKSM, Oct 4, Klf 4, Sox 8, Myc). Previous

studies [23] for explaining the reprogramming by two-gene model

(Fig. 1a) with a parallel increase of parameter a1=a2 in Eq. 1 didn’t

explicitly consider the ecto-expression of pluripotent genes. In that

explanation all the two fate genes will finally return to low

expression level. The enforced expression of OSKM in repro-

gramming cells may be safely explained by an improved

perspective. The mutually-inhibited genes in the two-gene model
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are possibly a part of the complex differentiation network

responsible for different somatic cell types fate commitment. They

are further activated by the pluripotency network genes including

the OKSM. A simplified model for this idea is shown in Fig. 4b as

a three-gene model. In this model, we found that, when we enforce

the expression of upstream regulator, the side terminal cells can be

indeed reprogrammed into states of center stem cells (Fig. S8).

Our work is different from that Wang’s in considerable ways.

We extended Wang’s study to construct the b=k=S-change

landscape and provided physical explanation why a=k change

can be used to map a developmental process while b=S change

cannot. We also quantified the transdifferentiation paths over the

two-gene landscape and found they are identical and direct

(parameter a doesn’t change). In contrast to Wang’s one-step

landscape, we also constructed the first two-step Waddington

development landscape based on a manual-curated network of

CNS development.

There are several relevance and differences between our CNS

developmental landscape and the original Waddington landscape.

Similar to the original landscape, our CNS developmental

landscape has two-step bifurcation with multiple valleys. Each

valley corresponds to a specific CNS cell type (Fig. 6d). Like what

shown on the Waddington landscape, the development on CNS

landscape starts from the center valley and ends with the

formation of three CNS cell type after two-step bifurcation.

However, developmental landscape in Waddingtonnian sense is

static [10] while our landscape is dynamic due to the noise

influence. The dominant transdifferentiation paths over CNS

developmental landscape do not correspond to a direct phenotypic

switch as in the two-gene landscape. This may result from the fact

that the bifurcation on the CNS developmental landscape

increases from one stable steady states to two stable states

(Fig. 6a) while that of the two-gene developmental landscape

decreases from three stables states to two stable steady states

(Fig. 1b, c).

Previous studies model the irreversibility of development by

certain feedback loops [49,50]. Here we assumed an exponential

decrease of Pax 6 to represent the feedback from all the mature

cell types. But we also considered supposed direct feedback from

marker genes (Tuj 1, Aldh1L 1 and Sox 8) to Pax 6 and obtained

similar results. In hematopoiesis, the gene expression dynamics of

multiple-step two-gene motifs is investigated by stochastic simu-

lation and bifurcation analysis in ref. [49,51]. However, we herein

present a physical model for CNS development, thus provide a

much fundamental and global understanding of cellular develop-

ment which cannot be captured by stochastic simulation and

bifurcation analysis.

Supporting Information

Figure S1 The original developmental/epigenetic land-
scape proposed by Cornad Waddington [10]. The original

epigenetic landscape. Here the landscape concept refers to the

recurring metaphor describing differentiation as a ‘‘down-hill’’

process of a cell ‘‘rolling’’ down from the high pluripotent hilltop

(the embryonic stem cells) to the lower valleys (the terminal

differentiated cells).

(EPS)

Figure S2 Landscape constructed by Ao or Bhattachar-
ya’s method. The stage-specific landscapes constructed by Ao or

Bhattacharya’s methods are topologically similar to what present-

ed in the main text. However, only the development landscape

constructed by Ao’s method is similar to what shown in the main

text. (A, C) Stage-specific (parameter a fixed) two-gene landscape

quantified by Bhattacharya and Ao’s methods (B, D) The

developmental landscape by Bhattacharya and Ao’s method.

(EPS)

Figure S3 The two-gene whole dynamic landscape and
EPR evolution under b or S change TOP. Similar landscapes

are constructed by systematically changing parameters b/S with

other parameters fixed (A) b-change landscape (a~0) (B) S-change

landscape Bottom: Under the change of parameter b, EPR

doesn’t increase monotonically in the starting part, providing a

potential physical explanation about why type-I bifurcation ([16])

is not suitable for development. EPR decreases monotonically

along the increase of parameter S, which implies that the decrease

of parameter S may correspond to the carcinogenesis (See main

text). (C) EPR vs b increases from 0 to 1.5. (D) EPR vs S increases

from 0.3 to 1. Here we also applied the basic parameters settings

as in Figure 1 of main text. EPR: Entropy Production Rate

(EPS)

Figure S4 The mean first passage time (MFPT or t) from
side attractor to center attractor under different noises.
As the noise increases, the developmental landscape becomes

increasingly flat (see Figure 3 in maintext). Accordingly, MFPT

decreases, which implies the cell types become less stable.

(EPS)

Figure S5 Stochastic simulation of CNS differentiation
by two different model and reprogramming from
oligodendrocyte to neuron. (A) The gene expression dynamics

during CNS differentiation which is epitomized by two step

bifurcation, similar to that of pancreas development as shown by

previous studies [17]. This diagram is based on our default model

with an enforced decrease of Pax 6. (B) The same as subfigure A,

but based on an alternative model with the negative feedback from

marker genes to CNS progenitor gene Pax 6. (C) The gene

expression dynamics during reprogramming from oligodendrocyte

to neuron. It shows that the oligodendrocyte first needs to be

induced into precursors during the reprogramming. The similar

results applies for reprogramming astrocyte to neuron.

(EPS)

Figure S6 Results of stochastic simulation matches
qualitatively public microarray datasets for astrogen-
esis. The microarray datasets confirmed qualitatively the starting

part of the simulation for astrogenesis gene expression dynamics.

(A) Microarray data for astrogenesis from E11 to E14. Each box

represents a specific time period, in which there are two

duplications of samples. Diagrams in row a and b shows the gene

expression dynamics for glia inducer and the second-step switch

genes, and astrogenesis related regulators/markers, respectively.

The expression level of each gene is normalized by the

corresponding maxima in the time series. (B) Relative expression

dynamics of three cell types markers in astrogenesis by microarray

data. (C) Single cell simulation for astrogenesis where the starting

part of the diagrams in column a and b matches quantitatively

with the gene expression dynamics of the diagrams in the

according rows of subgraph A.

(EPS)

Figure S7 Results of Stochastic simulation matches
qualitatively public microarray datasets for oligoden-
drogenesis. The microarray datasets confirmed qualitatively the

end part of the simulation for oligodendrogenesis gene expression

dynamics. (A) Microarray data for oligodendrogenesis from E11 to

E14. Each box represents a specific time period, in which there are

five duplications of samples. This diagram shows the gene

expression dynamics for second-step differentiation and oligoden-
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crogenesis related regulators/markers, respectively. The expres-

sion level of each gene is normalized by the corresponding maxima

in the time series. (B) Relative expression dynamics of three cell

types markers in oligodendrogenesis by microarray data. (C) Single

cell simulation for oligodendrogenesis where the late part of the

simulation matches quantitatively with the gene expression

dynamics shown subgraph a.

(EPS)

Figure S8 The bifurcation and developmental land-
scape of three-gene model. The bifurcation graph is based

on the three-gene motif of Figure 4b in main text, used to explain

our proposed idea about the stem cell stemness maintenance. The

developmental landscape is calculated through systematically

changing the expression level of gene A in the three-gene motif.

To obtain the figures, equation S7–8 is applied. (A) The

bifurcation graph of the three-gene motif where the dark points

are the stable fixed points and the light points are the unstable

fixed points. (B) The developmental landscape of the three-gene

motif.

(EPS)

Table S1 Crucial genes and regulatory relationship for
CNS development by manually curation. In this table, the

Source regulator column shows the upstream genes and the Target gene

shows their corresponding targets, both of which are crucial genes

underling CNS development. The relationship between regulators

and targets is listed in the third column, either positive (up-

regulation) or negative (down-regulation). If the regulation is

proposed, we denote a ‘‘FALSE’’ item in the fourth column. For

the confirmed regulation, we list the reference (Pubmid) for

readers’ check, while for proposed regulation, the listed reference

evidenced the importance of the target genes in the formation of

CNS. The data in this table is used to draw the Figure 4a in main

text.

(PDF)

Supporting information S1 This combined fourteen
pages supporting file includes four sections about the
mathematical basis for Ao’s and Sbhattacharya’s ap-
proaches to landscape construction, calculation of
MFPT under different noise influence, the confirmation
of astrogenesis and oligodendrogenesis simulations by
comparing with microarray data and the proposal for
explaining the stemness maintenance by the three-gene
model, respectively.

(PDF)
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