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ABSTRACT

The time-resolved scRNA-seq (tscRNA-seq) provides the possibility to infer physically meaningful1

kinetic parameters, e.g., the transcription, splicing or RNA degradation rate constants with correct2

magnitudes, and RNA velocities by incorporating temporal information. Previous approaches uti-3

lizing the deterministic dynamics and steady-state assumption on gene expression states are insuffi-4

cient to achieve favorable results for the data involving transient process. We present a dynamical5

approach, Storm (Stochastic models of RNA metabolic-labeling), to overcome these limitations by6

solving stochastic differential equations of gene expression dynamics. The derivation reveals that7

the new mRNA sequencing data obeys different types of cell-specific Poisson distributions when8

jointly considering both biological and cell-specific technical noise. Storm deals with measured9

counts data directly and extends the RNA velocity methodology based on metabolic labeling scRNA-10

seq data to transient stochastic systems. Furthermore, we relax the constant parameter assumption11

over genes/cells to obtain gene-cell-specific transcription/splicing rates and gene-specific degrada-12

tion rates, thus revealing time-dependent and cell-state specific transcriptional regulations. Storm13

will facilitate the study of the statistical properties of tscRNA-seq data, eventually advancing our14

understanding of the dynamic transcription regulation during development and disease.15

Keywords tscRNA-seq · Metabolic labeling enabled scRNA-seq · RNA velocity · Cell-specific Poisson model16

Background17

Cells are dynamic identities that are subject to intricate transcriptional and post-transcriptional regulations. Under-18

standing the tight regulation of the RNA life cycle will shed light on not only the regulatory mechanism of RNA19

biogenesis, but also cell fate transitions. Based on the observation that most scRNA-seq approaches capture both20

premature unspliced mRNA and mature spliced mRNA information, La Manno et al. La Manno et al. (2018) pio-21

neered the concept of RNA velocity or the time derivative of spliced RNA to reveal the local fate of each individual22

and designed a RNA kinetic parameter inference method called velocyto based on the steady state assumption. In a23

later work, scVelo Bergen et al. (2020) relaxed the steady-state assumption and proposed a dynamic RNA velocity24

model to infer gene-specific reaction rates of transcription, splicing and degradation as well as cell-specific hidden25

time using the expectation-maximization (EM) algorithm. Li et al. Li et al. (2021) derived a stochastic model of RNA26
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velocity based on the chemical master equation (CME) satisfied by the probabilistic mass function (PMF) rather than27

the deterministic ordinary differential equation (ODE) satisfied by the mean, and presented a mathematical analysis28

framework of RNA velocity. MultiVelo Li et al. (2022) extends the dynamic RNA velocity model by incorporating29

epigenome data that can be jointly measured with emerging multi-omics approaches. Protaccel Gorin et al. (2020)30

extends the concept of RNA velocity to protein. UniTVelo Gao et al. (2022) uses a top-down design for more flexible31

estimation of the RNA velocity, as opposed to the usual bottom-up strategy. DeepVelo Cui et al. (2022) uses graph32

convolutional neural networks to infer cell-specific parameters to extend RNA velocity to cell populations containing33

time-dependent dynamics and multiple lineages which were proven to be challenging in previous methods Bergen34

et al. (2021). Other deep learning-based approaches include VeloVI Gayoso et al. (2022), VeloVAE Gu et al. (2022),35

LatentVelo Farrell et al. (2022), cellDancer Li et al. (2023), and so on. However, due to the absence of physical time36

information, the above methods usually suffer the issue of scale invariance, that is, amplifying the parameters by an37

arbitrary amount will not change the solution if the time shrinks with the same amount, e.g., the exact physical time38

remains undetermined. This issue makes the inferred parameters and the RNA velocity have physical significance only39

up to a multiplicative constant Li et al. (2021). In addition, the missing time information enters the model as hidden40

variables, which makes the parameter inference difficult.41

Technological innovations in scRNA-seq now enable us to directly measure the amount of newly synthesized42

mRNA molecules over a short period of time, either through chemically introduced mutations in the sequencing43

reads or direct biotin pull-down of RNA analogs such as 4sU metabolically labeled RNA molecules, which subtly44

introduces physical time information. These time-resolved metabolic labelingaugmented scRNA-seq (tscRNA-seq)45

include scSLAM-seq Erhard et al. (2019), scNT-seq Qiu et al. (2020), sci-fate Cao et al. (2020), NASC-seq Hendriks46

et al. (2019) and scEU-seq Battich et al. (2020). Qiu et al. Qiu et al. (2022) recently developed Dynamo to reconstruct47

analytical vector fields from discrete RNA velocity vectors by taking advantage of tscRNA-seq data to infer more48

robust and time-resolved RNA velocity, however, they only used the deterministic model and largely relied on the49

steady-state assumption.50

To overcome the shortcomings of Dynamo and fully explore the potential of tscRNA-seq data, we present the Storm51

approach (Stochastic models of RNA metabolic-labeling) to improve the estimation of RNA kinetic parameters and52

the inference of the RNA velocity of the metabolic labeling scRNA-seq data by incorporating the transient stochastic53

dynamics of gene expressions. Importantly, we focus on modeling the kinetics/pulse metabolic labeling data as it54

follows the RNA synthesis across multiple short time periods and is thus ideal to capture temporal RNA kinetics. In55

order to properly model both biological noise and cell-specific technical noise (due to the variations in sequencing56

depth across individual cells and dropout resulting from imperfect RNA capture in scRNA-seq), we implemented in57

Storm three stochastic models of new mRNA (or new unspliced and spliced mRNA). Depending on the biological58

processes considered, Storm indicates that new mRNA sequencing data obeys different types of cell-specific Poisson59

(CSP) distributions. On this basis, Storm also includes hypothesis testing, parameter inference and goodness of fit60

evaluation methods for CSP-type distribution. In addition, we analyze the similarities and differences of the model61

considering RNA splicing or not. For one-shot data, we introduce the steady-state assumption to make the parameter62

inference possible. We verified the effectiveness of Storm in the cell cycle data set of kinetic experiments from63

the scEU-seq study Battich et al. (2020) and several one-shot datasets, including scSLAM-seq, scNT-seq and sci-64

fate. Storm is incorporated in Dynamo Qiu et al. (2022) of the Aristotle ecosystem that facilitates rich downstream65

analytical vector field modeling.66

Results67

Overall description of Storm68

We established three stochastic gene expression models for new mRNA (or new unspliced and spliced mRNA) (Fig.69

1A) for the inference of the RNA kinetic parameters and thus the RNA velocity in the Storm approach. In Model 1,70

only transcription and mRNA degradation were considered. In Model 2, we considered transcription, splicing, and71

spliced mRNA degradation. And in Model 3, we considered the switching of gene expression states, transcription in72

the active state, and mRNA degradation.73

The complete workflow of Storm is demonstrated in Fig. 1B. We first analytically solve the new RNA (or new74

unspliced and spliced mRNA) stochastic dynamics corresponding to the above three models, which are Poisson dis-75

tribution, independent Poisson distribution and zero-inflated Poisson distribution, respectively. In addition, we model76

the technical noise as the cell-specific binomial distribution. By integrating the biological noise and the technical noise77

together, we obtain the distribution for the measured number of new/labeled mRNA molecules (or new unspliced and78

spliced mRNA molecules), which are cell-specific Poisson distribution, independent cell-specific Poisson distribution79

2
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and cell-specific zero-inflated Poisson distribution, respectively. Maximum likelihood estimation (MLE) is used to fit80

the data and make inferences for the parameters shown in the corresponding models.81

To ensure the general applicability of Storm in common nascent RNA labeling schemes, such as one-shot or82

kinetics/pulse experiments (See Figure 2 of Qiu, et. al Qiu et al. (2022)), we designed specific estimation strategies83

for each labeling scheme. For the one-shot labeling experiments, since there is only one labeling duration, the steady-84

state assumption under the stochastic dynamics framework is reinvoked to infer parameters. For kinetics/pulse-labeling85

experiments with multiple labeling durations, the transient stochastic dynamics framework is used without the steady-86

state assumption. Furthermore, the goodness-of-fit index R2
D = 1 − D/D0 based on deviance commonly used in87

generalized linear models is utilized to quantify the goodness of fit of our models in kinetics/pulse datasets. The index88

is then used to select genes that are more consistent with model assumptions for later downstream analysis, such as89

the enrichment analysis of different gene-specific parameters. Furthermore, we relaxed the previous assumption of90

constant parameters in genes or cells and assumed that only degradation rates (γt in Models 1 and 3; γs in Model 2)91

are constant while the other parameters (α in three models; β in Model 2; poff in Model 3) are cell specific and depend92

on the state of gene expression in each cell. This relaxation would be useful for modeling lineage-specific kinetics93

resulted from hierarchical lineage bifurcation, which is common in cell developments. Finally, in order to calculate94

and visualize the RNA velocity, we reduced the considered stochastic models to derive the deterministic equation95

for the mean gene expression. The inferred parameters, after filtering with the goodness-of-fit index are then used96

in RNA velocity analysis and visualization. Notably, to demonstrate Storm’s performance, we conducted systematic97

comparison with the state-of-the-art method Dynamo Qiu et al. (2022) for processing metabolic labeling scRNA-seq98

experiment datasets.99

In the continued subsections we will present the details of each step in the Storm workflow, starting from the100

introduction of our mathematical models.101

CSP modeling of counts data with metabolic labeling information102

We proposed and analytically solved three aforementioned stochastic gene expression models for the dynamics of new103

mRNAs (or new unspliced and spliced mRNAs).104

For simplicity of modeling, we followed La Manno et al. (2018); Bergen et al. (2020) to assume that the genes are
independent. In the stochastic gene expression model, the generation of new/labeled mRNA l̃(t) (or new unspliced and
spliced mRNA (ũl(t), s̃l(t))) is a stochastic process, and we are interested in the evolution of its PMF over time,which
is denoted by

P̃n(t) : = Prob
(
l̃(t) = n

)
, n ∈ N

P̃mn(t) : = Prob
(
(ũl(t), s̃l(t)) = (m,n)

)
, (m,n) ∈ N2.

(1)

In Model 1 and Model 2, since the initial value of l̃(t) (or (ũl(t), s̃l(t))) is 0, we obtained the following closed-form
solution (see “Methods" section).

Model 1: P̃n(t) =
an(t)

n!
e−a(t), n ∈ N,

Model 2: P̃mn(t) =
bm(t)cn(t)

m!n!
e−b(t)−c(t), (m,n) ∈ N2,

(2)

where

a(t) =
α

γt
(1− e−γtt),

b(t) =
α

β
(1− e−βt),

c(t) =

{
α
γs
(1− e−γst) + α

γs−β (e
−γst − e−βt), β ̸= γs,

α
β (1− e−βt)− αte−βt, β = γs,

(3)

which means that l̃(t) obeys the Poisson distribution with mean a(t) in Model 1, and (ũl(t), s̃l(t)) obey independent105

Poisson distributions with mean b(t) and c(t) in Model 2. Here α, β are the transcription and splicing rates, and γs, γt106

are the spliced and total mRNA degradation rates, respectively.107

In Model 3, following Chong et al. (2014), we assumed that switching rates kon and koff are significantly smaller
than α and γt, which implies that the gene expression is either always on or always off during transcription/degradation

3
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Figure 1: Schematic overview of Storm. A. Three models of RNA life cycle considering different biological pro-
cesses: Model 1: Reaction dynamics model for new RNA l(t) ignoring the splicing process, where α is the tran-
scription rate and γt is the total mRNA degradation rate. Model 2: Reaction dynamics model of new unspliced and
spliced mRNA (ul(t), sl(t)) considering the splicing process, where β is the splicing rate, γs is the spliced mRNA
degradation rate, and α is the same as Model 1. Reaction dynamics model of new RNA l(t) considering gene state
switching, where α and γt are the same as in Model 1, kon is the rate at which the gene switches from the inactive
state to the active state, koff is the opposite. B. Complete workflow diagram for parameter inference and downstream
analysis based on stochastic dynamics of new mRNA considering technical noise.

period. Therefore, l̃(t) obeys a zero-inflated Poisson (ZIP) distribution, then we have

Model 3:
P̃0(t) = (1− poff)e

−a(t) + poff ,

P̃n(t) = (1− poff)
a(t)n

n!
e−a(t), n ≥ 1,

(4)

where poff = koff/(kon + koff) is the probability that gene expression is in the off state, i.e., the extra proportion of108

zeros in the ZIP distribution (see “Methods" section).109

We also specifically modeled technical noise of the measured number of new RNA (or new unspliced and spliced
mRNA) molecules in scRNA-seq experiments. Such noises often lead to dropout of RNA measurements during
the sequencing process and generally result in variations in sequencing depth across cells. To account the noise, in
Storm we modeled the dropout process of sequencing technology as cell-specific binomial distributions. Adopting the
common practice in many preprocessing pipelines through a size factor to normalize the data La Manno et al. (2018);
Bergen et al. (2020); Cui et al. (2022); Gayoso et al. (2022); Qiu et al. (2022), we assumed that the total numbers of
mRNA molecules across all genes in different cells are close. Probabilistically, this assumption implies that

pj ∝ nj ,

where pj is the probability of mRNA molecules being captured in cell j and nj is the total number of mRNA molecules110

across all genes in cell j in scRNA-seq experiments.111

4
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Combining the stochastic models for biological and technical noise, we can obtain different formalism of the
distribution for the measured number of new/labeled mRNA molecules l(t) (or new unspliced and spliced mRNA
molecules (ul(t), sl(t))) in the scRNA-seq experiments (see “Methods" section) for each model. Specifically, in
Model 1, l(t) obeys the cell-specific Poisson (CSP) distribution, that is,

Pn,j(t) =
(pja(t))

n

n!
e−pja(t), (5)

where Pn,j(t) is the PMF for the measured number of new mRNA molecules in cell j. In Model 2, (ul(t), sl(t)) obeys
the independent cell-specific Poisson (ICSP) distribution, that is,

Pmn,j(t) =
(pjb(t))

m

m!
e−pjb(t)

(pjc(t))
n

n!
e−pjc(t), (6)

where Pmn,j(t) is the joint PMF for the measure number of new unspliced and spliced mRNA molecules in cell j. In
Model 3, l(t) obeys the cell-specific zero-inflated Poisson (CSZIP) distribution, that is,

P0,j(t) = (1− poff)e
−pja(t) + poff ,

Pn,j(t) = (1− poff)
(pja(t))

n

n!
e−pja(t), n ≥ 1.

(7)

We call the above distributions as cell-specific because different cells obey the distributions with different parameters.112

Note that Grün et al. also modeled the scRNA-seq data by integrating biological noise and technical noise Grün113

et al. (2014). Our work is different from them in the following aspects: (1) Our work models the transient dynamics114

of new mRNA and solves their distribution for the proposed stochastic models analytically. However, in Grün et al.115

(2014), they instead modeled the total mRNA and derived that the biological noise follows a negative binomial distri-116

bution as the steady state of the transcriptional bursting model. (2) Our work accurately models the technical noise117

as a cell-specific binomial distribution, while they approximated the cell-sepcific binomial distribution with a Poisson118

distribution and modeled the capture probability as a random variable subject to the Gamma distribution, which finally119

leads to a negative binomial distribution (Poisson-Gamma mixture distribution) of the technical noise.120

As one-shot labeling experiments are much more convenient than pulse experiments in practice, in the following,121

we will first demonstrate how Storm can be applied to the one-shot case. We will then extensively show Storm’s power122

in analyzing the pulse datasets.123

Stochastic models combined with steady-state assumptions for one-shot data124

Since one-shot data has only one labeling duration, we designed the corresponding parameter inference method which125

invokes the steady-state assumption under the stochastic model, focusing specifically on Model 1 (see “Methods"126

section). Similar steady-state methods of the stochastic model can also be designed for both Model 2 and Model 3 as127

well, although they are not the focus of this paper.128

We validated our method in several one-shot datasets (Fig. 2, S1). We first analyzed a dataset from the sci-fate129

study Cao et al. (2020) in which cell cycle progression and glucocorticoid receptor (GR) activation were explored.130

Similar to Dynamo, the RNA velocity flow from our method also revealed a sequential transition of cells following the131

DEX (dexamethasone) treatment times in the first two principal components (PCs) (Fig. 2A Left). In the second two132

PCs, we observed an orthogonal circular progression of the cell cycle (Fig. 2A Middle). From the first two UMAP133

dimensions projected further from the four PCs, we observed a combined dynamics of GR responses and cell cycle134

progression (Fig. 2A Right). Next, we analyzed the neuronal activity dataset from the scNT-seq study Qiu et al.135

(2020) to investigate cellular polarization dynamics after KCl treatment (Fig. 2B). Dynamo and Storm both revealed a136

coherent transition that nicely follows the temporal progression from time point 0 to 15, 30, 60 and finally 120 minutes.137

We analyzed the murine intestinal organoid system dataset from scEU-seq Battich et al. (2020). Dynamo observed a138

bifurcation (Fig. S1B, top row) from intestinal stem cells into the secretory lineage (left) and the enterocyte lineage139

(right), and Storm also observed similar results, although with some defects in the secretory lineage (Fig. S1B, bottom140

row). We also analyzed mouse fibroblast cells dataset from scSLAM-seq Erhard et al. (2019). We observed that both141

Dynamo and Storm inferred velocities further discriminated infected from non-infected cells (Fig. S1C).142

To demonstrate the precision and robustness of the Storm method in estimating the one-shot dataset, we bench-143

marked the estimated kinetic parameters of different subsets of the cell cycle pulse-labeling dataset Battich et al.144

(2020), each with a different duration of labeling. On the 15-minute labeling sub-dataset, Storm recovers a transition145

that matches well with the cell-cycle progression, while the transition recovered by Dynamo is problematic near the146

M/M-G phase (Fig. 2C Left). On the 30-minute labeling sub-dataset, both methods recover the cell cycle progres-147

sion correctly, but the streamlines of our method are considerably smoother compared to those of Dynamo (Fig. 2C148

5
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Table 1: The proposed sample-specific hypothesis test results on whether the number of new mRNA molecules in the
Cell Cycle dataset obeys the CSP and CSZIP distributions. UTD means that it is unable to determine because there are
too few groupings resulting in zero degrees of freedom, when it is always a perfect fit. The significance level is 0.05.

Labeling duration 15mins 30mins 45mins 60mins 120mins 180mins

CSP
Accept 0.116 0.067 0.049 0.062 0.064 0.065
Reject 0.278 0.568 0.655 0.652 0.695 0.725
UTD 0.606 0.365 0.296 0.286 0.241 0.210

CSZIP
Accept 0.351 0.467 0.472 0.476 0.459 0.459
Reject 0.055 0.189 0.266 0.274 0.327 0.344
UTD 0.594 0.344 0.262 0.250 0.214 0.197

Right). In addition, we compared the consistency of degradation rates γt inferred by the two methods between two149

sub-datasets with different labeling durations (Fig. 2D). The results show that our method is more consistent compared150

with Dynamo. Notably, although Storm shows higher consistency than Dynamo, it is still not satisfactory, perhaps due151

to the experimental noises from different labeling durations and the violation of the steady-state assumption. Therefore,152

it is crucial to integrate data of different durations of labeling when a kinetic experiment is available. Furthermore, it153

is equally important to design methods that do not rely on the steady-state assumption for parameter inference.154

Finally, we quantitatively compared the degradation rates γt inferred by the two methods. The two methods155

are close on the other datasets (Fig. S1A,D) except on 15-minute labeling cell cycle sub-dataset where Dynamo is156

unreasonably large (Fig. S1A, third column). Thus, our method has similar or even better performance compared to157

Dynamo on the one-shot dataset.158

Statistical analysis of cell cycle dataset based on Storm’s stochastic model159

Next we first performed a goodness-of-fit test of the stochastic model proposed in Storm to a cell cycle dataset from160

scEU-seq Battich et al. (2020) with mutliple labeling time points to validate our proposals.161

When the fixed labeling duration is tfixed, a(tfixed), b(tfixed) and c(tfixed) are all fixed constants. We can test162

whether the number of new mRNA molecules in tscRNA-seq within a fixed labeling duration matches the distribution163

obtained based on the stochastic models (Eqs. (5), (6) and (7)), respectively. A common method of testing whether164

a dataset obeys a given distribution is the chi-square (χ2) goodness-of-fit test Pearson (1900). However, the usual χ2165

test is not directly applicable because in our case different cells obey different distributions with different parameters.166

By inspecting the mathematical analysis procedure of the χ2 test Benhamou and Melot (2018), we constructed a new167

asymptotic χ2 statistics and proposed a modified χ2 test for our cell-specific distributions (see “Methods" section).168

We used the proposed cell-specific χ2 test in the cell cycle dataset from the scEU-seq study Battich et al. (2020),169

in which cells were labeled for 15, 30, 45, 60, 120 or 180 minutes. Because the labeled unspliced mRNA counts ul(t)170

were too small to be grouped/binned to create a distribution, hypothesis tests were performed only for CSP and CSZIP171

distributions and not for ICSP. The results are shown in Table 1. We found that some genes were not well determined172

(especially for cases with a short duration of labeling) in the sense that these genes had too few new mRNA molecules173

in the tscRNA-seq experiments, which results in very few groupings and perfect fittings. With so few mRNA counts174

for these genes, we were unable to determine whether they obeyed our proposed distribution or not. Moreover, our175

results revealed that the CSZIP distribution exhibited a better fit with the data than the CSP distribution when focusing176

on a fixed time point alone, suggesting that the data are indeed zero-inflated.177

We next showed the high goodness-of-fit of the CSP and CSZIP model on two characteristic genes, namely RPL41178

and IL22RA1 with an overall low and high gene expression respectively (Fig. 3A). Qualitatively, we found that the179

expected counts of both the CSP and CSZIP models matched well with the observed counts for the gene RPL41.180

Quantitatively, the results of the cell-specific chi-square test also showed that the distribution of CSP or CSZIP was181

well satisfies in most labeling durations (Fig. 3A, first row). Similar results were observed for the gene IL22RA1182

with significantly higher expression (Fig. 3A, second row). Therefore, we demonstrated CSP and CSZIP distribution183

accurately describes these two genes and is thus suitable for modeling the tscRNA-seq datasets.184

Finally, we found that, for most genes, the number of total mRNA molecules shares the same distribution across185

different labeling durations. In Fig. 3B, we showed the number of total mRNA molecules of four example genes186

TSPOAP1, GPRC5A, ADAMTS6 and APEX1 is nearly identical across different labeling durations. Quantitatively, we187

performed a global chi-square independence test on the number of total mRNAs (as distinct from the new mRNAs)188

with different durations of labeling in all genes and found that, interestingly, there are 72.3% of the genes passed the189

6
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Figure 2: Stochastic model combined with steady-state assumptions for one-shot experiments. A. Streamline plots
of the sci-fate dataset Cao et al. (2020) reveal two orthogonal processes of GR response and cell-cycle progression.
From left to right: streamline plot on the first two PCs, the second two PCs, and the first two UMAP components
that are reduced from the four PCs, respectively. The first row is the result of CSP and the second row is the result
of Dynamo. The same applies to panels B, C, and D. B. Streamline projected in the UMAP space plots of neuronal
activity under KCl polarization datasets from scNT seq Qiu et al. (2020). C. Streamline projected in the RFP_GFP
space plots of cell cycle dataset from scEU-seq Battich et al. (2020). On the left is the result of taking only the data
labelled with 15 minutes, and on the right is the data labelled with 30 minutes. D. Comparison of degradation rates γt
in cell cycle datasets with labeling duration of 15 and 30 minutes.
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test at a significance level of 0.05 (Fig. 3C). This indicates that a considerable proportion of the number of genes’ total190

mRNA molecules obeyed the same distribution, consistent with what we observed for the four example genes.191

Figure 3: Statistical analysis of cell cycle dataset. A. Observed counts, expected counts of CSP, and expected counts
of CSZIP of new mRNA molecules of the two example genes RPL41 and IL22RA1. The first row: Fitting results of
the RPL41 gene with a small number of mRNA molecules; The second row: Fitting results of the IL22RA1 gene with
a higher number of new mRNA molecules (truncated to 11 for better visualization). B. Comparison of the total mRNA
counts with different labeling durations of the four example genes TSPOAP1, GPRC5A, ADAMTS6 and APEX1. C.
Results of chi-square independence test for total RNA counts (significance level 0.05).

Storm accurately infers kinetic parameters that leads to rich insights of cell cycle via enrichment analysis192

In the kinetic experiments, we relied on three stochastic models without the steady-state assumption to infer different193

set of kinetic parameters using maximum likelihood estimation (see “Methods section), namely α and γt for Model194

1, α, β and γs for Model 2, and α, γt and poff for Model 3. In addition, we defined the goodness-of-fit of each of195

the three models by utilizing the concept of deviance R2 commonly used in generalized linear models Menard (2000)196

(see “Methods" section). According to the goodness-of-fit index, we selected genes that were more consistent with the197

model assumptions for downstream tasks, such as the enrichment analysis and RNA velocity analysis, etc.198

Compared with Dynamo Qiu et al. (2022), the state-of-the-art method for processing tscRNA-seq datasets, our199

advantages are mainly in the following aspects: (1) Our method does not require steady-state assumptions on the200

kinetics experiments while Dynamo heavily relies on the steady-state assumptions; (2) Our stochastic model-based201

approach is more consistent with real biological process, while Dynamo only utilizes the deterministic model of mean202

value; (3) Our model takes into account all cells in the inference, while the approach based on steady-state assumptions203

in Dynamo only considers a small number of cells with high expression. In addition, we revealed the difference204

between the total mRNA degradation rate γt and spliced mRNA degradation rate γs based on their different physical205

roles, distinguished them in different models, and finally gave the relationship between these two (see “Methods"206

section). We noted that in Dynamo, to infer β, γt was first inferred when the splicing was ignored, then γ̃ := γs/β207

was inferred using the method based on the steady-state assumption in scVelo Bergen et al. (2020), and finally γt/γ̃208

was taken as the inference of β upon assuming γt = γs. However, γt/γ̃ = βγt/γs, while γt and γs are generally not209

equal. This point was overlooked in Dynamo, which causes a inaccurate estimate of β. In fact, under the steady-state210

assumption, β can be directly estimated by using only ul(t) through the formula ul(t) = (1 − e−βt)α/β, similar to211

the two-step method used in Dynamo to estimate γt through l(t) = (1 − e−γtt)α/γt since they have similar form.212

However, we don’t use this method in Storm.213

With the above inference methods and insights, we studied a cell cycle dataset from the scEU-seq study Battich214

et al. (2020). We compared the parameter inference results of the three models (Fig. 4A). When splicing was not215
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considered, the inference results based on CSP and CSZIP distributions were close, with high correlation coefficients,216

especially in genes with higher goodness of fit (Fig. 4A Left). However, whether or not splicing is considered217

significantly impacts the inference results. The inference results based on CSP and ICSP distribution were quite218

different, with low correlation coefficients, even in genes with higher goodness of fit (Fig. 4A Middle). We speculate219

that this is due to the assumptions of the two models are incompatible: in CSP, γt is assumed to be a constant; while220

in ICSP, γs is assumed to be a constant. But these two assumptions can not be held simultaneously for their different221

roles in the physical modeling and our analysis results (see “Methods" section). We also compared γt and γs computed222

by the ICSP model, and the results showed that γs was always greater than γt, and the linear correlation between the223

two was not high (Fig. 4A Right). In summary, we showed that kinetic parameters inferred from CSP and CSZIP but224

not CSP and ICSP, are consistent.225

The inferred total mRNA degradation rates γt from Storm and Dynamo are close in well-fitted genes, while ICSP’s226

inferred splicing rates β are always larger than from Dynamo. We compared the inferred results of γt in our CSP model227

with those in Dynamo (Fig. 4B Left). Although they were not consistent for some genes, they are quite consistent228

for the genes with better fitting. We also compared the inference of β in our ICSP model with those in Dynamo (Fig.229

4B Right). The result shows that the inferred β by our approach was usually larger than those in Dynamo, even for230

the genes with a better fitting. A possible explanation is that the inference of Dynamo ignored the difference between231

γt and γs, which made the inferred β smaller. We also compared the goodness-of-fit of the three stochastic models.232

Overall, they are relatively close (Fig. 4C Left). However, when we focused on genes with higher new mRNA levels233

(top 10%), the ICSP model had a better fit (Fig. 4C Right). We speculate that this is because genes with higher234

expression are suitable to be fitted with more complex models.235

When the parameter γt is small, parameter inference may not be robust enough. However, we found that the
genes selected by the goodness-of-fit have robust results. We analyzed the robustness of the parameter inference in the
simplest CSP model. When γtt is small, 1− e−γtt ∼ γtt holds, then

l(t) =
α(1− e−γtt)

γt
≈ αt, (8)

which implies that from the mean perspective the nonlinear fitting of α and γt degenerated into a linear fitting of α at
this point. For a more precise analysis, let ∂a(t)/∂α = (1− e−γtt)/γt, we have ∂ℓ(α, γt)/∂α = 0 is equivalent to

α(γt) =

∑K
k=1

∑nk

j=1 lj(tk)∑K
k=1

∑nk

j=1 pj(tk)∂a(tk)/∂α
. (9)

But when 1− e−γtt ∼ γtt holds, ∂a(t)/∂α ≈ t, then we have

α ≈
∑K

k=1

∑nk

j=1 lj(tk)∑K
k=1

∑nk

j=1 pj(tk)tk
(10)

is a constant, which we denoted by αcons. We plotted the landscape of a typical negative log-likelihood loss function
based on CSP model for gene WWTR1 (Fig. 4D Left), with the black line corresponding to ∂ℓ(α, γt)/∂α = 0 (i.e.
Eq. (9)) and blue line corresponding to α = αcons (i.e., Eq. (10)). The landscape of the loss function shows a fairly
flat area around ∂ℓ/∂α = 0, and the two lines almost coincide when γt is small, which is consistent with our previous
argument. In addition, to quantitatively measure the robustness of inference on γt, since the optimal parameter is
always located where the gradient is zero, we defined the l1-norm of the derivative of the loss function with respect to
γt restricted to ∂ℓ/∂α = 0 (i.e. black line),∥∥∥∥ dℓ

dγt

∣∣
∂ℓ
∂α=0

(γt)

∥∥∥∥
l1

=

∫ γt,max

0

∣∣∣ dℓ
dγt

∣∣∣dγt, (11)

as a measure of robustness. Since the half-life of the total mRNA molecules is usually not less than half an hour, we236

took γt,max = 1.5. We analyzed the relationship between the robustness measure and the goodness-of-fit R̄2
D (Fig.237

4D Right). We found that parameter robustness was positively correlated with the goodness of fit and the correlation238

coefficient was as high as 0.69. Though the reason for this high correlation is not clearly understood in theory, we can239

utilize this fact to select the genes with high goodness of fit for downstream analysis, which also ensures the results240

are relatively robust.241

We selected the well-fitted genes (top 40% R̄2
D) and performed enrichment analysis on this fraction according to242

the magnitude of gene-wise parameters γt, β, α and poff (Fig. 4E, Fig. S2). The results of the enrichment analysis243

showed that these genes were highly correlated with the cell cycle progression.244
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The assumption of constant coefficients is often violated because of the time-dependent kinetics and multiple245

lineages Bergen et al. (2021). Many works relaxed the constant coefficient assumption and inferred cell-specific246

parameters to overcome this issue Cui et al. (2022); Qiu et al. (2022); Gayoso et al. (2022); Li et al. (2023) . In247

our proposal, we take a post-processing step to get the cell-specific parameters after inferring all parameters through248

previous procedures. We relaxed the constant coefficient assumption and proposed a method to infer cell-specific249

parameters except the constant degradation rate γt or γs, i.e., we inferred cell-specific α in Model 1, cell-specific250

α×pon in Model 3, and the cell-specific α and β in Model 2 (see “Methods" section). This partial constant coefficient251

assumption had support from the study in Battich et al. (2020), which showed that the degradation rate of most genes252

was independent of time. Finally, We plotted heat maps of the cell-wise α (based on CSP model), α × pon (based on253

CSZIP model) and β (based on ICSP model) for the well-fitted genes (Fig. 4F). The results show that cells in the same254

cell cycle phase usually have closer kinetic parameters.255

Storm improves the robustness and accuracy of time-resolved RNA velocity analysis256

Our three stochastic models described the evolution of the PMF (or joint PMF) of the number of new mRNA (or new257

unspliced and spliced mRNA) molecules over time for different settings. To estimate RNA velocity of single cells,258

only the evolution of the mean value over time will be considered, which requires us to reduce the stochastic models259

to the corresponding deterministic models (see “Methods" section).260

Based on the deterministic model derived for the mean corresponding to the three stochastic models, we inferred261

the relevant parameters for computing different types of RNA velocity for different models. In Models 1 and 3, we262

computed the total RNA velocity d⟨r̃(t)⟩/dt because the splicing process was ignored. In Model 2, we calculated263

both total RNA velocity d⟨r̃(t)⟩/dt and spliced RNA velocity d⟨s̃(t)⟩/dt (see “Methods" section). Note that because264

the new RNA velocity mostly reflects the metabolic labeling process of RNA and does not reveal RNA biogenesis, it265

is thus not used. In addition, a derived relationship between γt and γs suggests that the total RNA velocity can be266

computed based on either d⟨r̃(t)⟩/dt = α − γs⟨s̃(t)⟩ or d⟨r̃(t)⟩/dt = α − γt⟨r̃(t)⟩. In practice, we used the former267

approach by default.268

We compared the streamlines of the total RNA velocity of our three models with that of Dynamo on the cell cycle269

scEU-seq dataset (Fig. 5A). Almost all streamlines from our models correctly reflect the cell cycle progression, except270

that part of them from the ICSP model had a minor flaw in the M phase and CSZIP in the S phase. In addition,271

we found both ICSP and Dynamo’s spliced RNA velocity (Fig. 5B) did not get entirely correct streamline results.272

The streamlines of our ICSP model were problematic in the M-G1 phase, while the streamlines of Dynamo were273

problematic in the S phase. We speculate that this is probably due to the fact that new unspliced mRNAs have rather274

low expression levels, frustrated with many dropouts and very sparse data, resulting in unreliable inferences of the275

parameter β and inaccurate RNA velocities.276

We also quantitatively benchmarked the average correctness and consistency of the velocities in different methods277

in the original gene expression space and low-dimensional space (here the RFP_GFP space is used which corresponds278

to the Geminin-GFP and Cdt1-RFP-corrected signals of RPE1-FUCCI cells)(Fig. 5C,D; Fig. S3A,B). The definition279

of correctness and consistency of velocity is given in the “Methods" section. In the gene expression space, the average280

correctness and consistency of the total RNA velocity of CSP, ICSP, and CSZIP are significantly better than that281

of Dynamo (Fig. 5C, D Left), while the spliced RNA velocity of ICSP has slightly lower consistency than that of282

Dynamo (Fig. 5C, D Right). In the RFP_GFP space, the average correctness of total RNA velocity of all methods283

are significantly higher compared to that in the gene expression space, and simpler methods tend to improve more.284

The average correctness of CSP is highest at this time (Fig. S3A Left). However, the average correctness of the285

ICSP’s spliced RNA velocity still perform slightly worse than Dynamo’s (Fig. S3A Right). In contrast, the total RNA286

velocity consistency of CSP and ICSP is significantly better than that of Dynamo (Fig. S3B Left) and the spliced RNA287

velocity consistency of ICSP is also significantly better than that of Dynamo (Fig. S3B Right). Overall, the CSP-based288

total RNA velocity had the highest average correctness and consistency, significantly outperforms Dynamo, while the289

ICSP-based spliced RNA velocity was close to Dynamo quantitatively.290

We now illustrate the advantages of our method in the estimation of kinetic parameters and the calculation of291

RNA velocity with two example genes: DCBLD2 and HIPK2. In gene DCBLD2, the cells at M and M-G1 have the292

highest overall expression and the correct RNA velocity should be negative (Fig 5E). However, Dynamo returned the293

positive velocity, which is problematic (Fig. 5F last column). In contrast, CSP, CSZIP and ICSP all returned negative294

velocities (the first three columns in Fig. 5F). We speculated one possible explanation is that the expression of the295

gene DCBLD2 has not yet reached a steady state. Consistent results were also observed from phase portraits of new-296

total RNA planes of DCBLD2 (Fig. 5G, Fig. S3C). For gene HIPK2, similarly, cells in phase M and M-G1 have the297

highest expression overall and the correct velocity should be negative (Fig. S3F), but Dynamo and CSP both returned298
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Figure 4: Parameter inference and enrichment analysis for the cell cycle dataset. A. Comparison of parameter
inference results of our three stochastic models. From left to right are the comparison of γt of CSP and CSZIP, the
comparison of γt of CSP and ICSP, the comparison of γt and γs in ICSP. The overlapping well-fitted genes were set as
the overlap set of genes in the top 40% of the goodness-of-fit for both methods. B. Comparison of inferred parameters
between our stochastic models and Dynamo’s method. Left: the comparison of γt between CSP and Dynamo. Right:
the comparison of β between ICSP and Dynamo. C. Comparison of the goodness-of-fit of the three stochastic models.
Left: all highly variable genes. Right: genes in the top 10% of average new mRNA expression in highly variable
genes. D. Robust analysis. Left: Landscape of Model 1-based loss functions for the a typical gene WWTR1. Right:
Scatter plot of robustness measure and goodness of fit for parameter inference. E. Enrichment analysis results of genes
with high γt, β (top 50%) in well fitted genes (top 40% of goodness of fit). F. Heat map of cell-wise parameters for
well-fitted genes. From left to right, cell-wise α based on the CSP model, cell-wise αpon based on the CSZIP model
and cell-wise β based on the ICSP model, respectively. Across all three heatmaps, the X-axis is the relative cell cycle
position while the order of genes in the y-axis is arranged such that the peak time of each gene increases from the top
left to bottom right.

positive velocities while CSZIP got the correct results (Fig. S3D,E). We speculated one possible explanation for this299

is that the expression switch plays an important role in HIPK2.300
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To demonstrate the value of using gene-cell-wise parameters (except degradation rates), we visualized the stream-301

lines of total RNA velocity based on gene-cell-wise parameters and those based only on gene-wise parameters (Fig.302

S3G). We observed that the streamlines of the CSP model and the CSZIP model in the S to G2-M phase are incorrectly303

reversed (Fig. S3G Left and Middle), and the streamlines of the ICSP model are also less smooth and accurate than304

those when gene-cell-wise parameters are used (Fig. S3G Right).305

Finally, to demonstrate the significance of inferring time-resolved velocities with physical units, we calculated306

the duration time of each cell cycle phase of the human RPE1-FUCCI system based on the total RNA velocities (see307

“Methods" section, Fig. 5H). Indeed, the human RPE1-FUCCI system has a cell-cycle time of about 21 hours (about308

6 hours for G1-S phase, 8 hours for S phase, 4 hours for G2-M phase, 1 hour for M phase and 2 hours for M-G1309

phase) Chao et al. (2019).310

Discussion311

Storm utilizes three stochastic models for the dynamical description of new mRNAs and allows the estimation of312

the RNA velocity for kinetics experiments without the need for the steady-state assumption. It can also generally313

handle one-shot data when the steady-state assumption is enforced. One possible limitation of our model is that314

it does not fully utilize the total mRNA information in kinetics experiments. According to the results of the chi-315

square independence test, the number of total mRNA molecules of most genes obeys the same distribution. Noting316

that the old mRNA molecules with a labeling duration of zero are the total mRNA molecules, we think that it is317

a feasible direction to establish the stochastic dynamics of old mRNA and use the Wasserstein distance in optimal318

transport approach Vallender (1974); Zhang et al. (2021) to measure the differences between discrete distributions.319

Therefore, the optimal transport modeling of old RNAs may be integrated with Storm to obtain more robust RNA320

velocity inference. In addition, it is also worth exploring stochastic models that consider switching of gene expression321

states, transcription in the active state, splicing and spliced mRNA degradation simultaneously (i.e., integration of322

Model 2 and Model 3).323

Some recent works, such as MultiVelo Li et al. (2022), Chromatin Velocity Tedesco et al. (2022), and protac-324

cel Gorin et al. (2020), extend RNA velocity to multi-omics. It is expected that the combination of metabolic labeling325

technology with other multi-omics measurements will bring new opportunities, which allows for simpler parameter326

inference and more accurate results.327

Finally, most of the existing methods make the independent gene expression assumption, and do not consider the328

regulatory mechanism between genes. Deep neural network approaches are promising to solve this problem. This will329

be an important future direction.330

Conclusions331

We present Storm for estimating absolute kinetic parameters and inferring the time-resolved RNA velocity of metabolic332

labeling scRNA-seq data by incorporating the transient stochastic dynamics of gene expressions. Storm establishes333

three stochastic models of new mRNA which take into account both biological noise and cell-specific technical noise,334

and makes inference to the gene-specific degradation rates and other gene-cell-specific parameters without relying on335

the steady-state assumption in kinetics experiments. It can also handle one-shot data when the steady-state assumption336

is adopted. Numerical results show that Storm is able to accurately fit the kinetic cell cycle dataset and many one-shot337

experimental datasets. In addition, our numerical experience suggests that Model 1 (i.e., the CSP model) outperforms338

the other two models when splicing dynamics is not of interest, and the Model 2 (i.e., the ICSP model) is the valid339

choice if the data contains both labeling and splicing information and splicing dynamics is of interest. However, further340

applications and performance evaluations for more challenging datasets with temporal information are desired and it341

will be studied in the future.342

Methods343

Derivation of three stochastic dynamical models344

Here we developed three stochastic models for the dynamical description of new mRNAs: Model 1) a stochastic345

dynamical model of new mRNA involving only metabolic-labeling transcription and degradation; Model 2) a stochas-346

tic dynamical model of new unspliced and spliced mRNA involving metabolic-labeling transcription, splicing and347

spliced mRNA degradation; and Model 3) a stochastic dynamical model of new mRNA involving gene state switch-348

ing, metabolic-labeling transcription and degradation.349
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Figure 5: RNA velocity analysis of the cell cycle dataset. A. Comparison of total RNA velocity streamline visualiza-
tions between three stochastic methods and Dynamo. B. Comparison of spliced RNA velocity streamline visualizations
between ICSP and Dynamo. C. Comparison of average correctness of velocity in gene expression space. Left: total
RNA velocity. Right: spliced RNA velocity. The p-values are given by the one-sided Wilcoxon test. D. Similar to
C, comparison of velocity consistency. E. The smoothed expression of DCBLD2 in different cells. F. Comparison of
total RNA velocity in DCBLD2 between three stochastic models and Dynamo. G. Phase portraits of new-total RNA
planes of DCBLD2. Quivers correspond to the total (x-component) or new (y-component) RNA velocity calculated by
the different methods. H. The duration time (unit: hour) of each cell cycle phase of the human RPE1-FUCCI system
based on Storm’s CSP model and Dynamo.

Model 1: Stochastic dynamical modeling of new mRNA350

Following Battich et al. (2020); Qiu et al. (2022), we made the following assumptions: (1) Genes are independent. (2)351

Both the transcription rate α and the degradation rate of total mRNA γt are constants.352
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The chemical master equation (CME) for the new/labeled mRNA l̃(t), corresponding to the chemical reactions
shown in the first row of Fig. 1A, is given by

dP̃n

dt
= −(α+ nγt)P̃n + αP̃n−1 + γt(n+ 1)P̃n+1, (12)

where P̃n(t) = Prob(l̃(t) = n). The initial value of new mRNA count is zero, i.e., P̃n(0) = δ0n, where

δmn =

{
1, if m = n

0, otherwise

is the Kroneckers delta function. The solution of Eq. (12) is

P̃n(t) =
a(t)n

n!
e−a(t), n ∈ N, (13)

where a(t) = α(1− e−γtt)/γt. This means that l̃(t) obeys the Poisson distribution with mean a(t).353

The above stochastic model only describes the true expression count of new mRNA l̃(t) in a cell with labeling
duration t, but the measured sequencing data is different from this count due to technical noise. Denote by l(t) the
number of measured new mRNA molecules, and assume that l(t) is associated with l̃(t) through a dropout process,
which we modeled as a binomial distribution:

Prob(l(t) = n | l̃(t) = N) = Cn
Npn(1− p)N−n := Bn(N, p), (14)

where p is the capture probability of a single mRNA molecule. We further assume that the total number of mRNA354

molecules across all genes in different cells are close, which was commonly adopted in the preprocessing step355

La Manno et al. (2018); Bergen et al. (2020); Qiu et al. (2022). Denote by nj the total number of mRNA molecules356

across all genes in cell j, i.e., nj =
∑

i rij , where rij refers to the number of mRNA molecules in gene i of cell j in357

the scRNA-seq measurements. This assumption implies that the capture probability of mRNA molecules in different358

cells is different, and pj ∝ nj . In our computation, we took pj = nj/nmed, where nmed is the median of nj .359

We denoted the PMF of new mRNA sequencing result lj(t) of cell j with labeling duration t by

Pn,j(t) := Prob (lj(t) = n) . (15)

Then

Pn,j(t) =
∞∑

N=n

P̃N (t)Bn (N, pj) =
(pja(t))

n

n!
e−pja(t), (16)

which means that lj(t) obeys the Poisson distribution with mean pja(t).360

In summary, the former derivation shows that the number of new mRNA molecules in different cells in scRNA-seq361

measurements obeys Poisson distribution with cell-specific parameters, and these parameters were proportional to pj ,362

i.e., proportional to nj . We call this distribution the cell-specific Poisson distribution.363

Model 2: Stochastic dynamical modeling of new unspliced and spliced mRNAs364

Compared with Model 1, we distinguished whether an mRNA molecule is spliced or not and incorporated the splicing365

process, which was shown in the first row of Fig. 1A. Again we assumed that the genes are independent. In addi-366

tion, we further assumed that the transcription rate α, splicing rate β, and spliced mRNA degradation rate γs are all367

constants.368

The CME for the new/labeled unspliced and spliced mRNAs (ũl(t), s̃l(t)), corresponding to the considered chem-
ical reactions shown in the first row of Fig. 1A, is given by

∂tP̃mn = α(P̃m−1,n − P̃mn) + β
[
(m+ 1)P̃m+1,n−1 −mP̃mn

]
+ γs

[
(n+ 1)P̃m,n+1 − nP̃mn

]
,

(17)

where P̃mn(t) = Prob((ũl(t), s̃l(t)) = (m,n)). The initial distribution of new unspliced and spliced mRNA is
P̃mn(0) = δm0δn0. The solution of Eq. (17) is

P̃mn(t) = b(t)mc(t)ne−b(t)−c(t)/m!n!, (m,n) ∈ N2, (18)
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where
b(t) = α(1− e−βt)/β,

c(t) =

{
α
γs
(1− e−γst) + α

γs−β (e
−γst − e−βt), β ̸= γs,

α
β (1− e−βt)− αte−βt, β = γs,

(19)

which means that ũl(t) and s̃l(t) obey independent Poisson distributions with mean b(t) and c(t), respectively. We369

refer interested readers to Li et al. (2021) for derivation details.370

Denote by (ul(t), sl(t)) the number of measured new unspliced and spliced mRNA molecules in the scRNA-seq
experiments with labeling duration t. By assuming that the dropout processes for new unspliced and spliced mRNAs
are independent and the capture probability is independent of whether they are spliced or not, we modeled the dropout
process for ũl(t) and s̃l(t) as independent binomial distributions with the same parameter p. So we got

Prob
(
(ul(t), sl(t)) = (m,n) | (ũl(t), s̃l(t)) = (M,N)

)
= Cm

Mpm(1− p)M−mCn
Npn(1− p)N−n := Bm(M,p)Bn(N, p).

(20)

For the same reason as Model 1, we take pj proportional to nj . And we took pj = nj/nmed in the computation.371

We denoted the joint PMF of new unspliced and spliced mRNA sequencing counts (ul,j(t), sl,j(t)) of cell j with
labeling duration t by

Pmn,j(t) := Prob
(
(ul,j(t), sl,j(t)) = (m,n)

)
.

Then

Pmn,j(t) =
∞∑

M=m

∞∑
N=n

b(t)Mc(t)N

M !N !
e−b(t)−c(t)BM (m, pj)BN (n, pj)

=
∞∑

M=m

b(t)M

M !
e−b(t)BM (m, pj)

∞∑
N=n

c(t)N

N !
e−c(t)BN (n, pj)

=
(pjb(t))

m

m!
e−pjb(t)

(pjc(t))
n

n!
e−pjc(t),

(21)

which means that ul,j(t) and sl,j(t) are independently Poisson distributed with mean pjb(t) and pjc(t), respectively.372

In summary, (ul(t), sl(t)) obeys independent cell-specific Poisson distribution.373

Model 3: Stochastic dynamical modeling of new mRNA considering switching374

In Model 3, we further considered the on/off gene state switching shown in the first row of Fig. 1C. We assumed that
the genes are independent as well, and the transcription rate α, mRNA degradation rate γt, the gene on-to-off rate koff
and off-to-on rate kon are all constants. Furthermore, we assumed that kon and koff are significantly smaller than α
and γt, which implies that the gene expression is either always on or always off during the transcription/degradation
period. From Eq. (12), it is known that cells in the on state obey a Poisson distribution with mean a(t), while cells in
the off state do not express. Define poff = koff/(koff + koff). Then l̃(t) obeys the zero-inflated Poisson distribution

P̃0(t) = (1− poff)e
−a(t) + poff ,

P̃n(t) = (1− poff)
a(t)n

n!
e−a(t), n ≥ 1.

(22)

Similarly, by taking into account the technical noise in scRNA-seq experiments, the PMF of lj(t) is

P0,j(t) = (1− poff)e
−pja(t) + poff ,

Pn,j(t) = (1− poff)
(pja(t))

n

n!
e−pja(t), n ≥ 1.

(23)

In summary, different cells obey the ZIP distribution with different parameters as shown in Eq. (23), which we375

called cell-specific zero-inflated Poisson distribution.376

Chi-square goodness-of-fit test for cell-specific distributions at a fixed time377

We would construct an asymptotic χ2 statistic for the data with common distribution type but sample-specific param-378

eters. This goodness-of-fit test is to assess whether the null hypothesis that the considered data, at a fixed labeling379

duration, obeys the proposed distribution can be accepted.380
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We first divided the value range of the considered data into c classes. According to the range that the samples
fall in, we got n independent categorically distributed random samples Xi ∈ {1, 2, . . . , c} for i = 1, 2, . . . , n with
sample dependent parameter pi, respectively. An equivalent representation for the categorical variable Xi is to denote
Xi = (Xij)j=1,...,c ∈ {e1, . . . , ec}, where ej = (δjk)k=1,...,c is the indicator vector for j = 1, . . . , c. Correspondingly,
the parameter pi = (pi1, . . . , pic)

T is a c-dimensional vector with non-negative elements and sums to one, which is
defined as

pij := Prob(Xij = 1) = 1− Prob(Xij = 0), j = 1, . . . , c. (24)
This implies that Var(Xij) = pij(1− pij) and Cov(Xij , Xil) = E[XijXil]− pjpl = −pjpl for j ̸= l. Therefore, the
covariance matrix of random vector Xi is

Σi =


pi1(1− pi1) −pi1pi2 . . . −pi1pic
−pi1pi2 pi2(1− pi2) . . . −pi2pic
...

...
. . .

...
−pi1pic −pi2pic . . . pic(1− pic)

 . (25)

For sample i, we defined the truncated random vector X∗
i = (Xi1, . . . , Xi,c−1)

T and truncated vector p∗i =
(pi1, . . . , pi,c−1)

T , which is the first c − 1 components of Xi and pi, respectively. The covariance matrix of X∗
i

is the submatrix consisting of the upper-left (c− 1)× (c− 1) block of Σi, denoted by Σ∗
i , which can be written as

Σ∗
i = diag(p∗i )− p∗i (p

∗
i )

T , (26)

where diag(p∗i ) is the diagonal matrix formed by the components of p∗i .381

Define X̄∗ := (
∑n

i=1 X
∗
i )/n, p̄∗ := (

∑n
i=1 p

∗
i )/n and Σ̄∗ := (

∑n
i=1 Σ

∗
i )/n, and let

χ2 := n(X̄∗ − p̄∗)T (Σ̄∗)−1(X̄∗ − p̄∗). (27)

Below we would show that χ2 is an asymptotic chi-square statistic with degrees of freedom c− 1. First note that

E[X̄∗] = E

[
1

n

n∑
i=1

X∗
i

]
=

1

n

n∑
i=1

E[X∗
i ] =

1

n

n∑
i=1

p∗i = p̄∗, (28)

then the covariance

D[X̄∗] = D

[
1

n

n∑
i=1

X∗
i

]
=

1

n2

n∑
i=1

D[X∗
i ] =

1

n

(
1

n

n∑
i=1

Σ∗
i

)
=

1

n
Σ̄∗. (29)

Let Yn =
√
n(Σ∗)−1/2(X̄∗ − p̄∗). When n goes to infinity, Yn converges in distribution to the normal distribution382

N(0, Ic−1) according to the central limit theorem for the independent sum of random variables. Thus, χ2 = Y T
n Yn383

converges in distribution to a chi-square distribution with degrees of freedom c− 1.384

In summary, we proposed a new asymptotic χ2 statistic for sample-specific distributions. For a fixed labeling385

duration tfixed, a(tfixed), b(tfixed) and c(tfixed) are all constants, the proposed χ2 statistics can be used to test whether386

the new mRNA sequencing data are consistent with the CSP, ICSP and CSZIP distributions based on Models 1, 2387

and 3, respectively. In addition, since there are one, two and two parameters to be inferred in CSP, ICSP and CSZIP,388

respectively, the same number of degrees of freedom should be subtracted. Following Koehler and Larntz (1980), we389

ensured that the expected count npj ≥ 0.25 in each group when determining the group value ranges. Finally, we take390

p-value as 0.05 in the computation.391

Parameter inference in one-shot experiments392

In the one-shot experiments, we only observed new RNA lj(t) and total RNA rj(t) data for one labeling duration t.393

So we had to invoke the steady-state assumption for the total RNA in this case.394

When the dynamics of total RNA in Model 1 is at steady state, i.e.,

0 =
dP̃r,n

dt
= −(α+ nγt)P̃r,n + αP̃r,n−1 + γt(n+ 1)P̃r,n+1, (30)

where P̃r,n := Prob (r̃ = n) is the invariant PMF of the true expression of total RNA. From Eq. (16) we know that
when technical noise is considered, the observed total RNA counts obey a similar CSP distribution

Pr,n,j =
(pjα/γt)

n

n!
e−pjα/γt . (31)
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At this point, we obtained the distributions of the new RNA and total RNA observations so that parameter inference
can be performed using the MLE. We want to maximize the log-likelihood function

ℓ(α, γt) =
n∑

j=1

log
(
P(pja(t))|lj

)
+ log

(
P
(
pjα/γt

)
|rj
)
, (32)

where P(λ)|n := Prob(X = n) = e−λλn/n! is the probability of X = n for a Poisson-distributed random variable
X with mean λ. When ∂ℓ/∂α = 0 and ∂ℓ/∂γt = 0, the likelihood function is maximized and it can be solved
analytically

γt = −1

t
log
(
1− ⟨lj⟩

⟨rj⟩

)
, α = γt

⟨rj⟩
⟨pj⟩

, (33)

where ⟨·⟩ means the population average defined by

⟨·⟩ =
( K∑

k=1

nk∑
j=1

(·)
)/( K∑

k=1

nk

)
. (34)

Since here it is for the one-shot data set, K = 1. Note that Eq. (33) is similar to the formula in Dynamo Qiu et al.395

(2022) for estimating the parameters for one-shot data. The difference is that this formula averages the raw counts,396

while the method in Dynamo averages the smoothed data.397

Parameter inference in kinetics experiments398

In the kinetics experiments, we observed data lj(tk) (or (ul,j(tk), sl,j(tk))) for new mRNA (or new unspliced399

and spliced mRNAs) with different labeling durations. We assumed that there are K labeling durations tk for400

k = 1, 2, . . . ,K , and the number of cells with labeling duration tk is nk. We utilized the MLE to infer the unknown401

parameters in different models without relying on steady-state assumptions.402

In Model 1, we need to maximize the log-likelihood function

ℓ(α, γt) =
K∑

k=1

nk∑
j=1

log
(
P(pj(tk)a(tk))|lj(tk)

)
. (35)

It is equivalent to minimizing the following loss function

L(α, γt) =

K∑
k=1

nk∑
j=1

−lj(tk) log(pj(tk)a(tk)) + pj(tk)a(tk). (36)

The optimum of the loss is achieved when the gradient equals 0. Utilizing the concrete expression of a(t) (Eq. (3)) in
Model 1, we got ∂a(t)/∂α = (1− e−γtt)/γt. Then ∂L(α, γt)/∂α = 0 has a closed form solution

α(γt) =
⟨lj(tk)⟩

⟨pj(tk)∂a(tk)/∂α⟩
. (37)

Another component of the Euler-Lagrange equation ∂L/∂γt = 0 has no closed form solution, so we need to solve403

γt by numerical iterations. We took the initial value of γt as the solution from Dynamo Qiu et al. (2022) under the404

steady-state assumption. Denote it as γt,0, and correspondingly, we take the initial value of α as α0 = α(γt,0).405

In Model 2, we need to maximize the log-likelihood function

ℓ(α, β, γs) =
K∑

k=1

nk∑
j=1

log
(
P(pj(tk)b(tk))|ul,j(tk) · P(pj(tk)c(tk))|sl,j(tk)

)
, (38)

which is equivalent to minimizing the loss function

L(α, β, γs) =
K∑

k=1

nk∑
j=1

(
− ul,j(tk) log(pj(tk)a(tk)) + pj(tk)a(tk)

)
+
(
− sl,j(tk) log(pj(tk)b(tk)) + pj(tk)b(tk)

)
.

(39)
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Utilizing (19), we got ∂b(t)/∂α = (1 − e−βt)/β, ∂c(t)/∂α = (1 − e−γst)/γs + (e−γst − e−βt)/(γs − β) when
β ̸= γs, and the case for β = γs is similar. So ∂L(α, βt, γs)/∂α = 0 has a closed form solution

α(β, γs) =
⟨ul,j(tk) + sl,j(tk)⟩

⟨pj(tk)( ∂b
∂α (tk) +

∂c
∂α (tk))⟩

. (40)

However ∂L/∂β = 0 and ∂L/∂γs = 0 have no closed form solution, and we need to solve these equations by406

iterations. The choice of initial values is similar to the Model 1 case. We took the initial value of β and γs as the407

solution from Dynamo Qiu et al. (2022) under the steady-state assumption, which we denoted as β0, γs,0. And then408

the initial value of α is taken as α0 = α(β0, γs,0).409

In Model 3, we need to maximize the log-likelihood function

ℓ(poff) =
K∑

k=1

nk∑
j=1

I{lj(tk)=0} log(ZIP(pja(tk), poff)|0)

+ I{lj(tk)>0} log(ZIP(pja(tk), poff)|lj(tk)),

(41)

where ZIP(λ, poff)|n := Prob(X = n) is the probability of X = n for a ZIP-distributed random variable X with
parameters λ and poff . It is equivalent to minimizing the loss function

L(α, γt, poff) =

K∑
k=1

nk∑
j=1

− log(ZIP(pja(tk), poff)|0)−

I{lj(tk)>0}

(
log(1− poff) + lj(tk) log(pj(tk)a(tk))− pj(tk)a(tk)

)
.

(42)

Similar as before, we chose the initial value of γt, denoted as γt,0, based on the steady state assumption, and chose the
moment estimator

poff,0 = 1−
⟨lj(tk)⟩2⟨(pj(tk) ∂a∂α (tk))

2⟩
⟨pj(tk) ∂a∂α (tk)⟩2(⟨lj(tk)2⟩ − ⟨lj(tk)⟩)

(43)

and

α0 =
⟨lj(tk)⟩

(1− poff,0)⟨pj(tk) ∂a∂α (tk)⟩
(44)

as the initial values of poff and α.410

According to the biological meaning of the parameters, we added the constraints 0 < α < 10α0, 0 < β < 10β0,411

0 < γt < 10γt,0, 0 < γs < 10γs,0 and 0 < poff < 1, and we called the SLSQP optimizer in SciPy to solve the above412

optimization problem.413

Goodness-of-fit test for the distribution evolution in time414

In ordinary least squares (OLS) linear regression, people often use

R2 := 1− RSS

TSS
= 1−

∑N
i=1(yi − ŷi)

2∑N
i=1(yi − ȳi)2

(45)

to define the goodness of fit, where yi is the sample observation, ŷi is the model prediction, and ȳi is the sample mean.
For the generalized linear model (GLM), the R2 can be defined using the deviance D and null deviance D0 Menard
(2000),

R2
D := 1− D

D0
= 1− −2(ℓ(β̂)− ℓs)

−2(ℓ0 − ℓs)
= 1− ℓ(β̂)− ℓs

ℓ0 − ℓs
, (46)

where ℓ(β̂), ℓ0 and ℓs denotes the log-likelihood function of the model with parameter β̂, the null model (that is,
fitted with only the intercept), and the saturated model (that is, fitted with one parameter per sample), respectively. A
pictorial representation of D and D0 is shown in Fig. 1E. R2

D can be seen as a generalization of R2, which is equal
to R2 when the model is a least squares linear regression Menard (2000). Finally, to overcome the disadvantage of
adding more parameters without reducing R2

D (similar to R2), we used adjusted R2
D (denoted as R̄2

D ) as the goodness
of fit of our model, which is defined as

R̄2
D := 1− D/dD

D0/dD0

= 1− (ℓ(β̂)− ℓs)/dD
(ℓ0 − ℓs)/dD0

, (47)
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where dD and dD0 are the degrees of freedom of D and D0, respectively.415

In Model 1, ℓs has the closed form

ℓs =
K∑

k=1

nk∑
j=1

lj(tk) log
(
P(lj(tk))|lj(tk)

)
. (48)

To calculate ℓ0, we need to maximize the log-likelihood function

ℓ(a0) =
K∑

k=1

nk∑
j=1

log
(
P(pj(tk)a0)|lj(tk)

)
, (49)

where a0 is the intercept. The problem has a closed form solution a0 = ⟨lj(tk)⟩/⟨pj(tk)⟩. In addition, dD = N − 2416

and dD0
= N − 1, where N is the number of cells.417

In Model 2, ℓs has the closed form

ℓs =
K∑

k=1

nk∑
j=1

log
(
P(ul,j(tk))|ul,j(tk)

)
+ log

(
P(sl,j(tk))|sl,j(tk)

)
(50)

To calculate ℓ0, we need to maximize the log-likelihood function

ℓ(b0, c0) = log
(
P(pj(tk)b0)|ul,j(tk)

)
+ log

(
P(pj(tk)c0))|sl,j(tk)

)
(51)

where b0 and c0 are intercepts and have closed form solutions b0 = ⟨ul,j(tk)⟩/⟨pj(tk)⟩ and c0 = ⟨sl,j(tk)⟩/⟨pj(tk)⟩,418

respectively. In addition, dD = 2N − 3 and dD0
= 2N − 2.419

In Model 3, to calculate ℓs, we need to maximize the log-likelihood function

ℓ(α, γt, poff) =

K∑
k=1

nk∑
j=1

I{lj(tk)=0} log
(
ZIP(0, poff)|0

)
+ I{lj(tk)>0} log

(
ZIP(lj(tk), poff)|lj(tk)

)
=

K∑
k=1

nk∑
j=1

I{lj(tk)>0} log
(
ZIP(lj(tk), poff)|lj(tk)

) (52)

When poff is equal to zero, Eq. (52) is maximized, and the closed form solution of ℓs is

ℓs =
K∑

k=1

nk∑
j=1

I{lj(tk)>0}

(
lj(tk) log(lj(tk))− lj(tk)− log(li(tk)!)

)
. (53)

To calculate ℓ0, we need to maximize the log-likelihood function

ℓ(a0, poff) =
K∑

k=1

nk∑
j=1

I{lj(tk)=0} log(ZIP(pja0, poff)|0)

+ I{lj(tk)>0} log(ZIP(pja0, poff)|lj(tk)).

(54)

Similar to solving Eq. (42), poff,0 and a0 were initialized using moment estimators with additional constraints 0 <420

poff < 1 and 0 < a < 10a0. We then called the SLSQP optimizer in SciPy to solve the problem. In addition,421

dD = N − 2 and dD0 = N − 1.422

Post-processing for cell-specific parameters423

In our cell-specific modeling of gene expression, we only assumed that γt (in Models 1 and 3) and γs (in Model 2)424

are constants over cells and are inferred based on the corresponding stochastic models, while the other parameters425

are cell-specific and continuously dependent on gene expressions. This relaxed assumption implies that only the426

degradation rate is common to all cells, and only cells with similar gene expressions have similar other parameters427

(due to continuous dependence). To realize this assumption, we first constructed the k-nearest neighbor (kNN) graph428
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of cells by a data preprocessing. The cell-specific parameter inference was performed by applying the inference to429

the kNN graph for each cell with local constant parameter assumption and already inferred degradation rates. The430

inference details for our three models were shown as below.431

In Model 1, we have
li(tk) ∼ Poisson(piaj(tk)), ∀i ∈ Nj,tk , (55)

where Nj,tk denotes the set of top k cells that have the most similar gene expressions as the jth cell with labeling
duration tk (including itself) and aj(tk) = αj(tk)(1− e−γttk)/γt. Assuming that γt has been inferred, we can obtain
a local estimator ∑

i∈Nj,tk
li(tk)∑

i∈Nj,tk
pi(tk)

= aj(tk) =
αj(tk)

γt
(1− e−γttk) (56)

by using the MLE. Define l̂j(tk) = (
∑

i∈Nj,tk
li(tk))/(

∑
i∈Nj,tk

pi(tk)). Then the cell-specific transcription rate
αj(tk) has a closed form solution

αj(tk) = l̂j(tk)γt/(1− e−γttk). (57)

In Model 2, we have

(ul,i(tk), sl,i(tk)) ∼ independent Poisson(pibj(tk), picj(tk)), ∀i ∈ Nj,tk . (58)

Similarly, assuming γs has been inferred, and defining the local estimators

ûl,j(tk) =

∑
i∈Nj,tk

ul,i(tk)∑
i∈Nj,tk

pi(tk)
, ŝl,j(tk) =

∑
i∈Nj,tk

sl,i(tk)∑
i∈Nj,tk

pi(tk)
, (59)

we have

ûl,j(tk) = bj(tk) =
αj(tk)

βj(tk)
(1− e−βj(tk)tk),

ŝl,j(tk) = cj(tk) =
αj(tk)

γs
(1− e−γstk) +

αj(tk)

γs − βj(tk)
(e−γstk − e−βj(tk)tk),

(60)

which is a nonlinear system. We have

ŝl,j(tk)

ûl,j(tk)
=

βj(tk)(1− e−γstk)

γs(1− e−βj(tk)tk)
+

βj(tk)(e
−γstk − e−βj(tk)tk)

(γs − βj(tk))(1− e−βj(tk)tk)
. (61)

To solve βj(tk), we set its initial value as previously inferred β by global constant assumption. We then call the foot
function in SciPy to solve the nonlinear equation (61) to get βj(tk). The αj(tk) has a closed form solution

αj(tk) = ûl,j(tk)βj(tk)/(1− e−βj(tk)tk). (62)

In summary, in Model 2, we can infer the cell-specific transcription rate αj(tk) and splicing rate βj(tk).432

In Model 3, we have
li(tk) ∼ ZIP(piaj(tk), poff,j(tk)), ∀i ∈ Nj,tk . (63)

When computing RNA velocity, we only need to know αj(tk)(1 − poff,j(tk)) as a whole, and not their respective
values (see next subsection). To simplify the computation, we used the moment estimation instead of MLE, and got

l̂j(tk) = (1− poff,j)aj(tk) =
(1− poff,j(tk))αj(tk)

γt
(1− e−γttk). (64)

Similarly, assuming γt has been inferred, αj(tk)(1− poff,j(tk)) has a closed form solution

αj(tk)(1− poff,j(tk)) = l̂j(tk)γt/(1− e−γttk). (65)

Reduction from stochastic to deterministic models for RNA velocity433

We used discrete counts data in the proposed parameter inference and goodness-of-fit calculation via stochastic models.434

However, when we need to compute and visualize the RNA velocity, we should take the reduction from stochastic to435

deterministic models to get the mean velocity. Below we would show the reduction process and reveal the connection436

between the stochastic and their corresponding deterministic models.437
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In Model 1, let us denote the mean value of l̃(t) by ⟨l̃(t)⟩, which is defined as ⟨l̃(t)⟩ =
∑∞

n=1 nP̃n(t). From Eq.
(12) we can obtain the deterministic equation after suitable algebraic manipulations

d⟨l̃(t)⟩
dt

=
∞∑

n=1

n
dP̃n(t)

dt

=
∞∑

n=1

n(−(α+ nγt)P̃n + αP̃n−1 + γt(n+ 1)P̃n+1)

=α− γt⟨l̃(t)⟩.

(66)

Similarly, the mean value of total RNA r̃(t) satisfies the equation

d⟨r̃(t)⟩
dt

= α− γt⟨r̃(t)⟩. (67)

Since the initial value of l̃(t) is zero, we got

⟨l̃(t)⟩ = a(t) =
α

γt
(1− e−γtt). (68)

In Model 2, the marginal PMFs of ũl(t) and s̃l(t) are

P̃m,·(t) : = Prob (ũl(t) = m) =

∞∑
n=0

P̃m,n(t),

P̃·,n(t) : = Prob (s̃l(t) = n) =
∞∑

m=0

P̃m,n(t),

(69)

respectively. The mean values of ũl(t) and s̃l(t) have the form ⟨ũl(t)⟩ =
∑∞

m=1 mP̃m,·(t) and ⟨s̃l(t)⟩ =∑∞
n=1 nP̃·,n(t). From the CME (17), we can obtain

d⟨ũl(t)⟩
dt

=

∞∑
m=1

m∂tP̃m,·(t) =

∞∑
m=1

m

∞∑
n=0

∂tP̃m,n(t)

=
∞∑

m=1

m
∞∑

n=0

α(P̃m−1,n − P̃mn) + β((m+ 1)P̃m+1,n−1 −mP̃mn)

+ γs((n+ 1)P̃m,n+1 − nP̃mn)

=α− β⟨ũl(t)⟩,

(70)

and
d⟨s̃l(t)⟩

dt
=

∞∑
n=1

n∂tP̃·,n(t) =
∞∑

n=1

n
∞∑

m=0

∂tP̃m,n(t)

=
∞∑

n=1

n
∞∑

m=0

α(P̃m−1,n − P̃mn) + β((m+ 1)P̃m+1,n−1 −mP̃mn)

+ γs((n+ 1)P̃m,n+1 − nP̃mn)

=β⟨ũl(t)⟩ − γs⟨s̃l(t)⟩.

(71)

Similarly, we can derive the equations for the mean values of total unspliced and spliced mRNA (ũ(t), s̃(t)):

d⟨ũ(t)⟩
dt

= α− β⟨ũ(t)⟩,

d⟨s̃(t)⟩
dt

= β⟨ũ(t)⟩ − γs⟨s̃(t)⟩.
(72)

Since the initial value of (ũl(t), s̃l(t)) is (0, 0), we got

⟨ũl(t)⟩ = b(t) =
α

β
(1− e−βt) (73)
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and

⟨s̃l(t)⟩ = c(t) =

{
α
γs
(1− e−γst) + α

γs−β (e
−γst − e−βt), β ̸= γs,

α
β (1− e−βt)− αte−βt, β = γs.

(74)

Similar to Model 1, in Model 3, d⟨l̃(t)⟩/dt and d⟨r̃(t)⟩/dt satisfy the equations

d⟨l̃(t)⟩
dt

= (1− poff)α− γt⟨l̃(t)⟩,

d⟨r̃(t)⟩
dt

= (1− poff)α− γt⟨r̃(t)⟩.
(75)

Since the initial value of l̃(t) is zero, we got

⟨l̃(t)⟩ = (1− poff)α

γt
(1− e−γtt). (76)

Computation of RNA velocity438

To ease the notation, we denoted the new mRNA after data preprocessing by l̄(t), defined as

l̄j(tk) =
1

|Nj,tk |
∑

i∈Nj,tk

li(tk)

pi(tk)
,

which is different from the true expression l̃(t), the discrete counts data l(t), and the notation l̂(t) in the post-processing439

subsection. We would also use the notation ū(t), s̄(t) and r̄(t) with similar definition.440

In Model 1, only the total RNA velocity can be obtained due to the lack of the splicing stage. From Eq. (67), we
have

vtotal,rj(tk) = αj(tk)− γtr̄j(tk), (77)
where r̄j(tk) is the number of total mRNA molecules of the jth cell labeled with length tk after data preprocessing.441

In Model 2, we add the two equations in Eq. (72) to obtain
d⟨r̃(t)⟩

dt
=

d⟨ũ(t)⟩
dt

+
d⟨s̃(t)⟩

dt
= α− γs⟨s̃(t)⟩, (78)

and thus get the equation for total RNA velocity

vtotal,rj(tk) = αj(tk)− γss̄j(tk). (79)

In addition, in Model 2, we can also calculate the spliced RNA velocity by the following equation

vspliced,sj(tk) = βj(tk)ūj(tk)− γss̄j(tk). (80)

Similar to Model 1, the total RNA velocity in Model 3 can be obtained by the equation

vtotal,rj(tk) = (1− poff,j(tk))αj(tk)− γtr̄j(tk). (81)

Relationship between γt and γs and its implications442

The difference between Eqs. (67) and (78) implies the difference between the total mRNA degradation rate γt and
spliced mRNA degradation rate γs. After suitable manipulations, we had the relation between γt and γs as below

γs
γt

=
⟨r̃(t)⟩
⟨s̃(t)⟩

. (82)

Therefore, we naturally got a method to infer γt when γs is known. Specifically, we first performed a zero-intercept
linear regression

r̄j(tk) = ks̄j(tk) (83)
to get the slope k. Then we computed γt by γt = γs/k. Therefore, we can also infer γt and compute the total RNA443

velocity by Eq. (77) in Model 2.444

We would also like to point out that Model 1 and 3 are incompatible upon assuming that γt and γs are both445

constants. These two assumptions usually do not hold simultaneously. Otherwise, from Eq. (82) we knew that446

⟨s̃(t)⟩/⟨r̃(t)⟩ is a constant, which is equivalent to that ⟨ũ(t)⟩/⟨r̃(t)⟩ is a constant, i.e., γt(1− e−βt)/(β(1− e−γtt)) is447

a constant. But this is only true when β and γt are equal.448
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Definition of correctness and consistency of velocity449

The correctness of cell velocities is defined as follows: Consider the cell i with position xi and velocity vi. Define its450

one-step extrapolated position as xi + vi. We say that vi is correct (correctness index = 1) if the cell j closest to the451

extrapolated position xi + vi ranks after i in the temporal ordering. Otherwise the correctness does not hold and we452

set the correctness index to be 0. Thus the average correctness refers to the percentage of correct velocities.453

The consistency means the extent to which the velocity of one cell is consistent with the velocities of its neighbor-454

ing cells, and we use the average cosine similarity proposed in scVelo Bergen et al. (2020) to measure this consistency.455

Calculation of cell cycle time456

After the total RNA velocities are obtained, we can evaluate the time of each phase of a cell cycle based on them.457

Specifically, we first pick k cells x0
i (i = 1, 2, . . . , k) whose relative positions are closest to 0 as a cell group, calculate458

their average expression x̄0 and velocity v̄0 as the initial expression x0 and velocity v0, and extrapolate the state of the459

cell group with a short time step dt, that is, x1 = x0 + v0dt. We then search for another k cells x1
i (i = 1, 2, . . . , k)460

which are closest to the extrapolated state x1, set the majority of the phase of these k cells to the phase of x1, and set461

their average velocity v̄1 as v1 for the second cell group. Next, the extrapolation and local k-cells group identification462

step can be repeated until a given threshold of the relative position is exceeded. In the actual calculation, we set463

k = 300, dt = 0.01, and the threshold of the relative position to be 88% quantile of all relative positions. The above464

approach for processing the cell groups instead of cells themselves is to reduce the data noise by local averaging.465

Data availability466
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et al. (2020), sci-fate Cao et al. (2020) and scEU-seq Battich et al. (2020). These datasets can be downloaded directly468

through the Python package Dynamo.469
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