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SUMMARY

Linking regulatory DNA elements to their target
genes, which may be located hundreds of kilobases
away, remains challenging. Here, we introduce Cic-
ero, an algorithm that identifies co-accessible pairs
of DNA elements using single-cell chromatin acces-
sibility data and so connects regulatory elements to
their putative target genes.We apply Cicero to inves-
tigate how dynamically accessible elements orches-
trate gene regulation in differentiating myoblasts.
Groups of Cicero-linked regulatory elements meet
criteria of ‘‘chromatin hubs’’—they are enriched for
physical proximity, interact with a common set of
transcription factors, and undergo coordinated
changes in histone marks that are predictive of
changes in gene expression. Pseudotemporal anal-
ysis revealed that most DNA elements remain in
chromatin hubs throughout differentiation. A subset
of elements bound by MYOD1 in myoblasts exhibit
early opening in a PBX1- and MEIS1-dependent
manner. Our strategy can be applied to dissect the
architecture, sequence determinants, and mecha-
nisms of cis-regulation on a genome-wide scale.

INTRODUCTION

Chromatin accessibility is a powerful marker of active regulatory

DNA. In eukaryotes, chromatin accessibility at both promoters

and distal elements delineates where transcription factors (TFs)

are bound in place of nucleosomes (Felsenfeld et al., 1996).

Genome-wide analyses of chromatin accessibility as measured

by DNaseI hypersensitivity have found that the repertoire of

accessible regulatory elements constitutes a highly specific mo-

lecular signature of cell lines and tissues (Thurman et al., 2012).

Furthermore, genome-wide association studies (GWAS) show
Molecular Ce
that a substantial proportion of genetic risk for common disease

falls within accessible regions in disease-relevant tissues or cell

types (Gusev et al., 2014; Maurano et al., 2012).

Despite its importance, we continue to lack a quantitative un-

derstanding of how changes in chromatin accessibility relate to

changes in the expression of nearby genes. A prerequisite for

such an understanding is a map that links distal regulatory ele-

ments with their target genes. To this end, we developed Cicero,

an algorithm that generates such linkages on a genome-wide ba-

sis based on patterns of co-accessibility in single-cell data.

We demonstrate Cicero’s capabilities through an analysis of

skeletal myoblast differentiation, which remains one of the best

characterized models of gene regulation in vertebrate develop-

ment. Myoblast differentiation is orchestrated by a core set of

TFs, including MYOD1 and MEF2 (Molkentin et al., 1995), which

regulate the expression of thousands of genes as cells exit the

cell cycle, align, and fuse to form myotubes. Here, we used sin-

gle-cell combinatorial indexing ATAC-seq (sci-ATAC-seq) on

13,367 cells to identify 329,020 accessible elements in myo-

blasts, nearly 22,000 of which open or close during differentia-

tion. When applied to these data, Cicero linked most dynamic

sites to one or more putative target genes. From the resulting

cis-regulatory map, we can predict changes in gene expression

based on the chromatin accessibility dynamics of the linked

distal elements.
Design
In contrast with previous approaches that rely on a large com-

pendium of bulk chromatin accessibility data generated across

many cell lines or tissues (Thurman et al., 2012; Budden et al.,

2015), we sought amethod that wouldworkwith single-cell chro-

matin accessibility data from a single experiment and that was

robust to the sparsity of that data. Cicero uses sampling and

aggregation of groups of similar cells to adjust for technical con-

founders and to quantify correlations between putative regulato-

ry elements. Based on these correlations, Cicero links regulatory

elements to target genes using unsupervised machine learning.

The algorithm can be applied to any cell type and organism

for which a sequenced genome and single-cell chromatin
ll 71, 1–14, September 6, 2018 ª 2018 Published by Elsevier Inc. 1
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Figure 1. Differentiating Myoblasts Follow Similar Single-Cell Chromatin Accessibility and Gene Expression Trajectories
(A) Single-cell chromatin accessibility profiles for human skeletal muscle myoblasts (HSMM) were constructed with sci-ATAC-seq. Contaminating interstitial

fibroblasts (common in HSMM cultures) were removed informatically prior to further analysis.

(B) Aggregated read coverage from sci-ATAC-seq experiments in the region surrounding TNNT1 and TNNI3 in myoblasts (0 hr) andmyotubes (72 hr). Bulk ATAC-

seq prepared from the same wells as experiment 2 are shown alongside DNase-seq from ENCODE for comparison (ENCODE experiments ENCSR000EOO and

ENCSR000EOP) (ENCODE Project Consortium, 2012).

(C) The single-cell trajectory inferred from 2,725 myoblast sci-ATAC-seq profiles from experiment 1 by Monocle (see STAR Methods). In subsequent panels and

throughout the paper, we exclude cells on the branch to outcome F2 unless otherwise indicated. Inset: the sci-RNA-seq trajectory reported for HSMMs

(reproduced from Figure 2 of Qiu et al., 2017a, cells were from the same lot and were cultured under identical conditions to those for sci-ATAC-seq).

(D) Distribution of cells in chromatin accessibility pseudotime from the root to trajectory outcome F1.

(E) Percent of differentiating cells whose promoters for selected genes are accessible across pseudotime. Black line indicates the pseudotime-dependent

average from a smoothed binomial regression.

(F) Percent of cells whose promoters for selected genes in (E) are accessible in fibroblasts collected in growth medium (GM) or differentiation medium (DM), as

well as myoblasts localized to the branch to F2.

See also Figure S1.
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accessibility data are available. Because it accepts single-cell

data as input, Cicero can in principle work on complex mixtures

of different cell types as are found in tissues.

RESULTS

The Trajectories of Chromatin Accessibility and Gene
Expression during Myoblast Differentiation Are Highly
Similar
We performed a differentiation time course on human skeletal

muscle myoblasts (HSMM), harvesting cells at 0, 24, 48, and

72 hr after the switch from growth media to differentiation media

(Figure 1A). With optimized sci-ATAC-seq (Cusanovich et al.,
2 Molecular Cell 71, 1–14, September 6, 2018
2018), we profiled chromatin accessibility in 13,367 cells across

2 independent experiments. Aggregated single-cell ATAC-seq

data were highly concordant with both bulk ATAC-seq and pub-

lished DNaseI hypersensitivity data from myoblasts and myo-

tubes (Figures 1B and S1A) (ENCODE Project Consortium,

2012). To define accessible regions, we pooled reads from all

cells from each experiment and called peaks with MACS 2

(Zhang et al., 2008). The vast majority of peaks were shared be-

tween experiments (Figure S1B), so we used a single merged set

of peaks for all downstream analyses. After excluding 7,538 cells

flagged as likely interstitial fibroblasts based on the absence of

promoter accessibility in any of several known muscle markers

(56%, a proportion similar to our estimate from single-cell



Please cite this article in press as: Pliner et al., Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data, Molec-
ular Cell (2018), https://doi.org/10.1016/j.molcel.2018.06.044
RNA-seq in this system) (Qiu et al., 2017a), we identified 329,020

sites accessible in muscle cells. Each cell had reads overlapping

with an average of 3,466 promoter-proximal accessible sites and

9,055 distal accessible sites (Figure S1C).

We next sought to characterize changes in chromatin acces-

sibility as myoblasts differentiated. However, analyzing differen-

tiation from time series data is confounded by asynchronicity,

i.e., Simpson’s Paradox (Simpson, 1951). To overcome this,

we recently developed the technique of ‘‘pseudotemporal reor-

dering’’ (or ‘‘pseudotime’’) that uses machine learning to orga-

nize cells according to their progress through differentiation

(Trapnell et al., 2014). Although our algorithm, Monocle 2, was

designed for single-cell transcriptomes (Qiu et al., 2017a), we

were able to adapt it to sci-ATAC-seq data with straightforward

modifications (see STAR Methods).

Monocle independently placed the cells from each experi-

ment along similar trajectories with two outcomes (denoted

F1 and F2) (Figures 1C and S1D). These trajectories are similar

to the trajectory constructed from single-cell transcriptomes in

our previous work (Qiu et al., 2017a) (Figure 1C, inset). Cells

harvested from growth media fell almost exclusively near the

beginning of the trajectories, while cells from later time points

were distributed over their length (Figure 1D). Over the path

to F1, promoters for well-known myogenic regulators and struc-

tural components of muscle opened (became more accessible),

whereas the promoter of ID1, a well-characterized repressor of

myoblast differentiation (Benezra et al., 1990), closed (Fig-

ure 1E). Similar to the single-cell RNA sequencing (RNA-seq)

trajectory (Qiu et al., 2017a), a number of cells were positioned

on a branch leading to the alternative outcome F2. That these

cells are accessible at the MYOD1 promoter, but not the

MYH3 promoter, suggests they represent ‘‘reserve myoblasts’’

that did not fully differentiate (Yoshida et al., 1998) (Figure 1F).

The similar trajectories constructed by Monocle from three in-

dependent experiments, as well as the close correspondence

between the kinetics in expression and chromatin accessibility

for key muscle genes, support the accuracy of Monocle’s

pseudotime ordering.

Distal DNA Elements Are Dynamically Accessible during
Myoblast Differentiation
Differential analysis revealed significant pseudotime-dependent

changes in accessibility at 21,678 of 329,020 (6.6%) sites during

myoblast differentiation (Figures 2A and S2A). In addition, we

conducted a similar differential analysis on previously published

single-cell RNA-seq data from the same system (Trapnell et al.,

2014). Of the ‘‘dynamic’’ accessible sites, only 1,324 (6.1%)

were promoters (Figure 2B), of which 92 overlapped with 1,464

differentially expressed transcripts (false discovery rate [FDR]

<5%) by single-cell RNA-seq. Of the 64 of promoters with non-

transient changes in both accessibility and gene expression,

62 (97%) were directionally concordant. Of the 20,354 distal,

dynamically accessible sites, 68%were annotated as enhancers

in myoblasts or myotubes (Libbrecht et al., 2016), as compared

with only 36% of all accessible sites (Figure 2B).

Using gene set enrichment analysis, we found that genes

associated with contraction and other muscle-related functions

were strongly enriched among genes with significantly opening
promoter regions. In contrast, promoters for genes associated

with the cell cycle, which are downregulated early in differentia-

tion, were only marginally enriched among the differentially

accessible sites (Figure S2B). Most markers of actively prolifer-

ating cells did not show significant changes in promoter acces-

sibility (Figure S2C).

Comparison to ChIP-seq data (Cao et al., 2010) revealed that

59% of opening sites and 34% of closing sites are bound by

MYOD1 in myotubes and myoblasts, respectively (Figure 2C).

In contrast, only 16% of static sites (those without significant

changes in accessibility) were MYOD1-bound in either myo-

blasts or myotubes. Dynamically accessible distal elements

and promoters were also strongly enriched for binding motifs

for MYOD1, MYOG, and MEF2 family members and other TFs

with central regulatory roles in myogenesis (Figure 2D).

Many TFs recruit enzymes that mark histones near regulatory

DNA elements. For example, MYOD1 recruits p300, whose his-

tone acetyltransferase activity is required for its role in activating

gene expression (Dilworth et al., 2004; Puri et al., 1997; Sartorelli

et al., 1997). A comparison with ENCODE data for myoblasts and

myotubes showed overwhelming directional concordance be-

tween sites that were gaining or losing H3K27 acetylation

(H3K27ac) versus sites that were opening or closing in chromatin

accessibility, respectively (Figure 2E). However, most changes in

histone marks during differentiation occurred at sites that did not

undergo significant changes in chromatin accessibility (Fig-

ure S2D). Thus, myoblast differentiation is characterized by

changes in H3K27ac at hundreds of thousands of sites, only a

minority of which were accompanied by changes in their chro-

matin accessibility, at least to the extent that they are detectable

by the methods employed here.

Cicero Constructs Genome-wide cis-Regulatory Models
from Sci-ATAC-Seq Data
We next sought to exploit patterns of co-accessibility between

distal elements and promoters to build a genome-wide cis-reg-

ulatory map. This is challenging for several reasons. First, the

raw correlations are driven in part by technical factors such as

read depth per cell. Second, we have insufficient observations

to accurately estimate correlations between billions of pairs of

sites. Third, single-cell ATAC-seq data are very sparse. Finally,

while the accessibility of distal elements might be correlated

with their target promoters, very distant or interchromosomal

pairs of sites, will also be correlated by virtue of being part of

the same regulatory program.

To address these challenges, we developed a new algorithm,

Cicero, that subtracts technical and genomic distance effects

while constructing a global cis-regulatory map from single-cell

chromatin accessibility profiles (Figure 3A). Briefly, the user

provides Cicero with cells as input that have been clustered

or pseudotemporally organized. The algorithm creates many

groups of cells, each comprised of 50 cells similarly positioned

in clustering or trajectory space. This helps to overcome the

sparsity of the data while avoiding Simpson’s paradox (Simp-

son, 1951; Trapnell, 2015). It then aggregates accessibility pro-

files for cells in each group to produce counts that can be

readily adjusted to subtract the effects of technical variables.

Finally, it computes the correlations in adjusted accessibilities
Molecular Cell 71, 1–14, September 6, 2018 3
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Figure 2. Thousands of DNA Elements Are Dynamically Accessible during Myoblast Differentiation

(A) Smoothed pseudotime-dependent accessibility curves, generated by a negative binomial regression and scaled as a percent of the maximum accessibility of

each site. Curve regressions are the same as regression for differential accessibility (see STAR Methods). Each row indicates a different DNA element. Sites are

sorted by the pseudotime at which they first reach half their maximum accessibility.

(B) Proportions of dynamic and static sites by site type. Color indicates whether a site is promoter-proximal (see STAR Methods), a distal enhancer (defined as

peaks that are not promoter-proximal, and are annotated by Segway as enhancers in either myoblasts or myotubes), or other distal (remaining sites).

(C) Percent of sites reported as bound by MYOD1 in either myoblasts or myotubes by Cao et al. (2010).

(D) Motif enrichments in accessible sites. p values result from logistic regression models that use the presence or absence of a given motif in each site to predict

whether the site has a given accessibility trend (opening/closing/static). Plots show up to the top 6 Bonferroni-significant motifs by p value.

(E) Counts of sites undergoing significant changes in H3K27 acetylation as measured by chromatin immunoprecipitation sequencing (ChIP-seq)

(Tang et al., 2015).

See also Figure S2.
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between all pairs of sites within 500 kb. To calculate robust cor-

relations, we use Graphical LASSO (Friedman et al., 2008),

which estimates regularized correlation matrices. Cicero penal-

izes correlations in a distant-dependent manner, preserving

local patterns at the expense of very long-range ones. The

output of Cicero consists of the co-accessibility scores for all

pairs of sites within 500 kb of one another. Full details are pro-

vided in the STAR Methods.

We applied Cicero to generate a genome-wide cis-regu-

latory map from our myoblast sci-ATAC-seq data. As the first

step, for example in experiment 1, Cicero aggregated differen-

tiating myoblasts into 277 groups and identified 6.5 M pairs of

sites with positive co-accessibility scores, including 1.8 M

comprising a distal element and promoter. As the co-accessi-

bility threshold is raised, promoters are connected to fewer

regulatory elements with higher confidence. For example, at
4 Molecular Cell 71, 1–14, September 6, 2018
a cutoff of 0.25, promoters were connected to a median of 2

distal elements in experiment 1 (Figure S3A). Distal sites that

were highly co-accessible with promoters were more

conserved across vertebrates (Figure 3B). This trend was

more pronounced for sites linked to highly conserved genes,

which tended to be co-accessible with more conserved distal

elements (Figure 3C). To verify that co-accessibility between

sites was not confined to our specific primary myoblast cul-

ture, we performed bulk ATAC-seq in myoblasts from another

donor (‘‘54-1’’), before and after differentiation. Reassuringly,

highly co-accessible sites were 2.2-fold more likely than un-

linked sites to be undergoing directionally concordant changes

in accessibility across differentiation in the 54-1 cells (Fig-

ure 3D). To explore how accessibility corresponded with

gene regulation during differentiation, we devised a composite

‘‘gene activity score’’ of accessibility at both promoters and
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Figure 3. Cicero Constructs cis-Regulatory Models Genome-wide from Sci-ATAC-Seq Data

(A) An overview of the Cicero algorithm (see STAR Methods for details).

(B) Mean phastCons 46-way placental conservation scores of distal peaks connected to promoters. Peaks were stratified by distance from the promoter and

co-accessibility score between the promoter and the distal peak.

(C) Mean distal site conservation score versus connected gene conservation score stratified by co-accessibility score.

(D) Odds ratios of concordant accessibility dynamics across differentiation in 54-1myoblasts between pairs of sites that are co-accessible in HSMM. For each bin

of co-accessibility in HSMM, pairs of peaks that overlapped peaks in 54-1 non-targeting controls were assessed for concordant dynamics (>2 log2 fold change in

both peaks or <�2 log2 fold change in both peaks). Error bars indicate 95% confidence intervals calculated using Fisher’s exact test. Asterisks represent

estimates significantly different than 1 (p values < 0.05 by Fisher’s exact test).

(E) Two ‘‘phases’’ of myoblast differentiation illustrated.

(F) A summary of the Cicero co-accessibility links between theMYOG promoter and distal sites in the surrounding region. The height of connections indicates the

magnitude of the Cicero co-accessibility score between the connected peaks. The top set of (red) links were constructed from cells in phase 1, while the bottom

(in blue) were built from phase 2.

See also Figures S3 and S4.
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linked distal sites (STAR Methods). Accessibility-based gene

activity scores were positively correlated with expression (Fig-

ures S3B–S3D).

As co-accessible elements tended to cluster, we post-pro-

cessed Cicero’s output with a community detection algorithm

to identify ‘‘cis-co-accessibility networks’’ (CCANs): modules

of sites that are highly co-accessible with one another. The ma-

jority of dynamically accessible sites were included in CCANs

even using a high co-accessibility threshold (Figures S4A–S4E).

To assess the reproducibility of Cicero maps, we adapted a

maximum weighted bipartite matching method to identify pairs

of CCANs from the two experiments that share DNA elements

in common (STAR Methods). This algorithm matched 1,868 of

the CCANs between the experiments, accounting for 84% and

91% of the sites in CCANs in experiments 1 and 2, respectively
(Figure S4F). Most pairs of sites linked in one experiment were

also linked in the other (score >0.25; 81% of experiment 1 sites

also linked in experiment 2; 64%of experiment 2 sites also linked

in experiment 1; Figures S4G and S4H).

To further investigate chromatin dynamics during differentia-

tion, we constructed Cicero maps on the two ‘‘phases’’ of the

pseudotime trajectory (before versus after the F2 branch) and

computed CCANs for each map (Figure 3E). The general struc-

ture of Cicero connections was often maintained around genes

of interest. For example, a similar set of distal elements are

linked to the promoter of MYOG in both the early and late

phases (Figure 3F). To identify CCANs that were maintained,

gained, or lost during differentiation, we applied our matching

algorithm to compare CCANs between the first and second

phases. For experiment 1, this algorithm matched 1,945
Molecular Cell 71, 1–14, September 6, 2018 5
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CCANs, accounting for 88% and 91% of the sites in CCANs in

the first and second phases, respectively. However, although

the general structure of CCANs was stable (few sites switched

CCANs), many sites joined or left CCANs during differentiation

(Figures S4I and S4J). Intriguingly, we identified 60 sequence

motifs that were predictive of whether a site would join, leave,

or remain within a CCAN, including CTCF, which strongly pre-

dicted that an accessible site would remain within a CCAN

(Figure S4K).

We hypothesized that the CCANs identified by Cicero consti-

tute ‘‘chromatin hubs.’’ Chromatin hubs, which are thought to

involve looping interactions between distal regulatory elements

and the genes they target, may act to coordinate the assembly

of transcription complexes (de Laat and Grosveld, 2003; Tolhuis

et al., 2002). To satisfy the definition of a chromatin hub, we

expect CCANs should meet four criteria. First, they should

exhibit greater physical proximity than expected based on their

distance in the linear genome. Second, they should interact

with a common set of protein complexes. Third, they should be

epigenetically modified in concordant ways and at similar times.

Finally, they should substantially contribute to regulating genes

with promoters within the hub.

Co-accessible DNA Elements Exhibit Physical Proximity
To test whether co-accessible sites are closer together in the nu-

cleus than unlinked sites at similar distances in the linear

genome, we generated and applied Cicero to sci-ATAC-seq

chromatin profiles from 889 human lymphoblastoid cells

(GM12878), for which ChIA-PET and promoter-capture Hi-C

data are available.

We observed strong concordance between Cicero-based

linkages and DNA elements in RNA pol II-mediated contacts

captured via ChIA-PET (Tang et al., 2015) as well as contacts

found by promoter-capture Hi-C (Cairns et al., 2016; Mifsud

et al., 2015), e.g., at the CD79A locus (Figure 4A). Approxi-

mately half of DNA elements ligated via ChIA-PET (‘‘anchors’’)

overlapped with accessible sites in our data, with greater

overlap between anchors that were supported by multiple

ChIA-PET reads and sites that were accessible in many cells

(Figures S5A and S5B). Pairs of sites reported by Cicero to

be co-accessible were up to 2- to 3-fold more likely to be

found in ChIA-PET and promoter-capture Hi-C than unlinked

sites separated by similar distances (Figures 4B and 4C).

Reciprocally, pairs of sites linked by many independent

ChIA-PET or Hi-C ligation fragments were more likely to also

be reported as co-accessible by Cicero (Figures 4D and 4E),

e.g., �75% of high-confidence ChIA-PET connections were

found in Cicero’s map. Although proximity ligation frequencies

should not be taken as a direct measure of physical distance,

these analyses show that Cicero-linked sites exhibit greater

than expected physical proximity, even when very distant in

the linear genome. We also found that Cicero connected sites

were more likely to occupy the same topologically associated

domain (TAD) than unlinked sites at the same distance

(Fisher’s exact test, p value < 2e�5 for all distance bins,

TADs derived from 1 kb-resolution Hi-C analysis of

GM12878; Rao et al., 2014). Similarly, Cicero-linked sites

were 1.5-fold more likely than unconnected pairs at the
6 Molecular Cell 71, 1–14, September 6, 2018
same distance to be found in the same A/B compartment (Fig-

ures S5C and S5D).

Co-accessible DNA Elements Carry Pairs of Motifs for
Interacting TFs
We next investigated whether Cicero links might be mediated

by interacting TFs. We searched for known sequence motifs

within each peak in the HSMM data that could accurately pre-

dict whether Cicero would link other sites to it. Promoters

with DNA binding motifs for one or more core myogenic TFs

were significantly more likely to be connected (co-accessi-

bility score >0.25) to an opening distal site than promoters

without them. For example, promoters containing at

least one MYOD1, MYOG, or MYF6 motif were 3.6-fold

more likely to be connected to an opening distal site than pro-

moters with none of these motifs (p = 8.7 3 10�270; likelihood

ratio test for logistic regression model), and similarly, pro-

moters with at least one MEF2 family motif were 2.8-

fold more likely to be connected to an opening distal site

(p = 7.9 3 10�119).

We hypothesized that these correlations resulted from direct,

TF-mediated interactions. To explore this further, we focused on

promoters linked to exactly one dynamically accessible distal

site (co-accessibility score >0.05) and used Graphical LASSO

to identify pairs of motifs where the presence of a motif in the

promoter predicted the presence of the paired motif in the

dynamically accessible distal site (STARMethods). We identified

a number of motif pairs corresponding to TFs known to physi-

cally interact. For example, opening distal elements were signif-

icantly more likely to have a MEF2 or RUNX1 motif if they were

linked to a promoter with aMYOD1motif (Figure S6A). Myogenic

regulatory factors (MRFs) are known to interact physically with

MEF2 and RUNX1 (Knoepfler et al., 1999; Molkentin et al.,

1995; Philipot et al., 2010).

MYOD1Coordinates HistoneModifications in Cohorts of
Co-accessible Sites
The physical proximity of co-accessible sites suggested that

recruitment of histone-modifying enzymes to one site might

induce changes in physically proximate sites. Indeed, pairs of

sites were more likely to be undergoing significant, concordant

gains in H3K27ac if they were linked by Cicero (Figure 5A). Sites

that themselves exhibited static accessibility, but were linked to

a dynamic, opening site, showed strong gains in H3K27ac, while

static sites that were linked to dynamic, closing sites showed

strong losses (Figure 5B). The gains in acetylation might be

driven by de novo binding of MYOD1 at the opening site followed

by recruitment of a histone acetyltransferase (e.g., p300). Sup-

porting this, of the 2,050 sites with significant gains in

H3K27ac but static accessibility, only 46% were bound by

MYOD1 in myotubes. However, 97% were linked by Cicero to

a MYOD1-bound site (Figure 5C). Moreover, equipping a regres-

sion model with information about linked sites improved its

accuracy in predicting changes in a site’s histone marks

(Figure S6B).

We next considered whether gains in MYOD1 binding were

concentrated in a few CCANs or widely distributed. Of the

2,323 hubs containing promoters, 74% contained at least one
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Figure 4. Co-accessible DNA Elements Linked by Cicero Are Physically Proximal in the Nucleus

(A) Cicero connections for theCD79A locus compared to RNA pol-II ChIA-PET (Tang et al., 2015) and promoter capture Hi-C (Cairns et al., 2016). Link heights for

ChIA-PET are log-transformed frequencies of each interaction PET cluster and for promoter capture Hi-C are soft-thresholded log-weighted p values from the

CHiCAGO software.

(B) Odds ratio of pairs of sites within a given co-accessibility and distance bin found in RNA pol-II ChIA-PET compared to pairs of sites with co-accessibility%0.

Color represents the co-accessibility bin. Error bars indicate 95% confidence intervals calculated using Fisher’s exact test. All points shown were significantly

different than 1 (p values < 0.05 by Fisher’s exact test).

(C) Similar to (B), but comparing Cicero links to sites ligated in promoter-capture Hi-C. All points shown were significantly different than 1 (p values < 0.05 by

Fisher’s exact test) except for at the 10 kb bin that may be impacted by the resolution of Hi-C consequent to the use of a 6-cutter restriction enzyme. For (B) and

(C), we fit a linear model that included co-accessibility score and overall accessibility and found in both cases that co-accessibility had a significant effect on

presence in comparison datasets even after correcting for this potential confounder (see STAR Methods for details).

(D) Fraction of ChIA-PET contacts found in Cicero connections as a function of distance, stratified by multiplicity of ligation product detections.

(E) Promoter-capture contacts detected in Cicero CCAN connections as a function of distance, stratified by CHiCAGO score.

See also Figure S5.
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site undergoing a change in MYOD1 binding. For the subset of

431 hubs with a differentially expressed gene, 92% contained

at least one site changing inMYOD1binding. For example, within

the single hub that includes myosin heavy chain isoforms 1, 2, 3,

4, 8, and 13 and numerous other genes, 15 sites underwent sig-

nificant increases in accessibility. Of these, all were bound by

MYOD1 in myotubes (Figure 5E). Interestingly, however, two

sites very near MYH3 (marked with asterisks) opened substan-

tially earlier in pseudotime than others and were bound by

MYOD1 in myoblasts as well.

Wewondered,more generally, whether sites bound byMYOD1

in myoblasts and throughout differentiation opened earlier than

sites that gainedMYOD1binding during differentiation. A change-

point analysis using PELT (Killick et al., 2012) revealed that

sites bound by MYOD1 throughout differentiation opened signif-

icantly earlier in pseudotime than those that gained MYOD1

(Mann-Whitney test p value 1.2e�122) or were never bound by
it (Mann-Whitney test p value 8.0e�223) (Figure 5F). Moreover,

rather than being enriched in whole hubs that open early as

a group, constitutively MYOD1-bound sites opened significantly

earlier than sites linked to them that either gained MYOD1

(two-sided paired Student’s t test p value = 1.0e�182) or

were never bound by it (two-sided paired Student’s t test p

value = 4.5e�318) (Figure 5G). Constitutively MYOD1-bound

sites were enriched for the MEIS1 and AP-1 motifs (Figure 5H)

comparedwith sites that gainMYOD1 later in differentiation. Alto-

gether, siteswithMEIS1motifs were linked to 69%of dynamically

opening sites comparedwith only 16%of sites genome-wide (co-

accessibility score >0.25). Murine Meis1, in conjunction with

Pbx1, has been reported to act as a complex required for the

MYOD1-mediated activation of the myogenin promoter, and mu-

tations in MYOD1 that prevent interaction with PBX1 resulted in

loss of many binding sites and regulatory targets (Berkes et al.,

2004; Fong et al., 2015). Our results suggest MEIS1 recruitment
Molecular Cell 71, 1–14, September 6, 2018 7
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Figure 5. Co-accessible DNA Elements Linked by Cicero Are Epigenetically Co-modified

(A) Odds ratio of a site gaining H3K27ac during myoblast differentiation, given that it is linked to a site that is doing so. Color indicates the strength of the Cicero

co-accessibility links. The lightest color indicates pairs of sites that are unlinked by Cicero.

(B) Correspondence between a statically accessible site’s gain or loss of H3K27ac and its maximum co-accessibility score to a site that is opening (x axis) or

closing (y axis). Sites that are not linked to an opening or closing site are drawn at x = 0 or y = 0, respectively.

(C) Similar to (B), but describing the correspondence between a site’s gain or loss of H3K27ac and its maximum co-accessibility score to a site that is gaining or

losing MYOD1 binding.

(D) The variance explained in a series of linear regression models in which the response is the log2 fold change in H3K27ac level of each DNA element and the

predictors are whether that site is opening, closing, or static, whether it gains or losesMYOD1 binding, and whether it is linked to neighbors that are doing so. See

STAR Methods for details on model specifications.

(legend continued on next page)
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of MYOD1 may be pervasive throughout the genome and could

nucleate activation of other sites within a chromatin hub.

Sequence Features of Active Chromatin Hubs Predict
Gene Regulation
We wondered whether Cicero’s putative maps could be used to

predict changes in gene expression. As a first test, we asked

whether two genes with co-accessible promoters exhibited

greater correlation in expression across individual cells than

genes that were nearby but whose promoters were not linked

by Cicero. Indeed, differentially expressed genes showed

greater correlation in expression as a function of their co-acces-

sibility score (Figure S7F).

We next sought to develop a linear regressionmodel to predict

changes in either gene expression or changes in ‘‘barrier region’’

histone marks associated with promoter activation (Figure 6A).

Our first model takes as input a binary map of the TF bindingmo-

tifs present at the promoter upstream of each TSS. We then train

it to predict how much of a gene’s observed expression change

is attributable to each TF motif using elastic net regression and

50-fold cross-validation (STAR Methods). The promoter-based

model explained only 17%of the variance in expression and per-

formed similarly in predicting a panel of histone marks (Figures

6B and 6C). Augmenting this model with TFmotifs at linked distal

sites improved its ability to explain changes in expression by

2.27-fold (Figure 6C). The TF motifs identified by the model

included the MRF E-box, the MADS box bound by MEF2 family

proteins, and the MEIS1 binding site, which were associated

with upregulation, along withmotifs for factors that drive cell pro-

liferation such as AP-1, which were associated with downregula-

tion (Figure 6D). Thus, when tasked with predicting which factors

are important for gene regulation, our regression identified the

major myogenic TFs using only the sequences in sites linked

together by Cicero.

MEIS1 andPBX1AreRequired forCoordinatedMyoblast
Chromatin Hub Activation
We hypothesized that MYOD1, which recruits p300/PCAF and

the BAF complex upon myoblast differentiation, might act to

nucleate histone modification and nucleosome remodeling

throughout a chromatin hub. To test this hypothesis, we geneti-

cally ablated MEIS1 or PBX1 (that forms a heterodimer with

MEIS1) with CRISPR/Cas9 in 54-1 cells and then performed

bulk ATAC-seq as they differentiated. Both DMEIS1 and

DPBX1 myoblasts differentiated markedly less efficiently, with

fewer and smaller myotubes than cells transduced with non-tar-

geting control (NTC) single guide RNAs (sgRNAs) (Figure 7A). Of

14,321 sites that underwent significant changes in accessibility

in the 54-1 NTC, 7,868 (55%) and 12,520 (87%) failed to do so
(E) The Cicero map for the 755 kb region surroundingMYH3 along with called MY

colored by their opening pseudotime (see STAR Methods), sites not opening in ac

MYOD1ChIP-seq andH3K27ac ChIP-seq signal tracks fromCao et al. (2010) and

(F) Opening pseudotimes for all opening sites, subdivided by whether MYOD1 is

(G) The difference in opening pseudotimes between pairs of linked DNA elemen

bound by MYOD1.

(H) TF binding motifs selected by an elastic net regression (alpha = 0.5), with a r

See also Figure S6.
in DMEIS1 or DPBX1 cells respectively, and nearly 25% of sites

that failed to open overlapped sites bound by MYOD1 in both

normal myoblasts and myotubes (Figure 7B).

Having observed that pairs of sites Cicero identified as highly

co-accessible in HSMMs were more likely to open or close

concordantly in the 54-1 cells upon differentiation (Figure 3D),

we asked whether co-accessible pairs would be concordantly

perturbed in the mutants. Indeed, pairs of sites that opened in

the 54-1 NTC and were linked by Cicero tended to both fail to

open in the mutants. For example, pairs of sites that Cicero

linkedwith a co-accessibility score >0.3were 2.3-foldmore likely

to both fail to open in DPBX1 and 1.6-fold more likely in DMEIS1

than pairs of sites Cicero deemed not co-accessible, suggesting

that co-accessibility is often maintained even when cells fail to

differentiate (Figure 7C).

We next assessed whether constitutively MYOD1-bound sites

might nucleate changes throughout hubs by first dividing normally

opening sites into those that were constitutively MYOD1-bound

and those that were not.We then testedwhether other sites linked

to these groups at varying levelsweremore or less likely to coordi-

nately fail to open in DMEIS1 (Figure 7D). Consistent with our hy-

pothesis, highly co-accessible sites were 1.5-fold more likely to

both fail to open in DMEIS1 myoblasts when one of the sites was

constitutively bound by MYOD1 than when neither was constitu-

tivelyboundbyMYOD1 (pvalue0.0011,Fisher’s exact test). These

findings suggest thatMEIS1maybe important for properMYOD1-

mediated recruitment of chromatin remodeling complexes to spe-

cific sites that subsequently act on others in 3D proximity.

DISCUSSION

Despite their paramount importance, maps that comprehen-

sively link distal regulatory sequences to their target genes are

still lacking. Toward addressing this,wedevelopedCicero,which

constructs putative cis-regulatory maps from single-cell chro-

matin accessibility data. We anticipate these maps will guide

downstream validation by other scalable methods such as

massively parallel reporter assays and CRISPR-mediated (epi)

genome editing. In contrast with other approaches like ChIA-

PET and promoter-capture Hi-C, Cicero operates on single-cell

data and therefore avoids averaging effects that can confound

bulk assays. As described here for amodel of skeletal muscle dif-

ferentiation, downstream analyses of Cicero-based links can

advance our quantitative understanding of the eukaryotic gene

regulation and may also facilitate the identification of the target

genes of noncoding variants underlying GWAS signals.

Pseudotemporal ordering of chromatin accessibility profiles

from differentiating myoblasts revealed dynamic changes in

thousands of DNA elements. Although changes in promoter
OD1 ChIP-seq peaks from (Cao et al., 2010). Sites opening in accessibility are

cessibility are shown in gray. Inset: 60 kb region surroundingMYH3 along with

the ENCODEProject Consortium (2012). Only protein-coding genes are shown.

bound in myoblasts and myotubes, myotubes alone, or neither.

ts. The pairs are grouped based on whether one or both sites is constitutively

esponse encoding the MYOD1 binding status of each site.
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Figure 6. Chromatin Dynamics at Distal DNA Elements Predicts Gene Regulation

(A) Changes in histone acetylation in the first 1 kb downstream of each gene’s TSS, corresponding to the ‘‘barrier’’ to RNA pol II elongation posed by nucleo-

somes, are correlated with changes in the gene’s expression.

(B) Two regression models predict changes in the histone marks deposited throughout each gene’s barrier region. The first model predicts changes on the basis

of TF binding motifs in gene promoters. The second model adds variables encoding the strength of co-accessibility with linked sites containing the motif. See

STARMethods for details on the variousmodels. Adjusted R2 is computed as the fraction of null deviance explained. The number to the right of each bar indicates

the ratio of variance explained between the first and second model.

(C) Similar to (B), with changes in expression as the response.

(D) Coefficients from the model incorporating sequence at distal sites for each motif surviving model selection via elastic net. Note that the model considers each

motif twice: once at promoters and again at distal sites, and both can be selected by elastic net.

See also Figure S7.
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accessibility were a poor predictor of gene expression dy-

namics, distal sites linked to genes by Cicero improved these

models, particularly when sequence motifs were incorporated.

Our analyses show that the CCANs defined by Cicero meet

the definition of chromatin hubs: they are physically close in

the nucleus, their histone marks change in a coordinated

fashion, and their interactions are likely mediated by a common

set of TFs, some lineage-specific. For myogenesis, our results

support a model of gene activation in which a subset of ‘‘preco-

cious’’ enhancers recruit chromatin remodeling enzymes and

other epigenetic modifiers to the hub, which mediates in-

creases in accessibility of other binding sites (Figure 7E). For

such a mechanism to work, chromatin hubs enclosing genes

silent in myoblasts and activated during differentiation would

need to be largely established prior to its onset. Indeed, Cicero

linked more than half of activated or upregulated genes into

such ‘‘pre-established’’ chromatin hubs. Sites that join or leave

a hub are distinguished from those that remain part of it by spe-

cific TF motifs.

In differentiatingmyoblasts,MYOD1 iswidely understood to re-

cruit the BAF complex and p300/PCAF to activate enhancers of

muscle genes (Serra et al., 2007; Simone et al., 2004). Although

the role of MYOD1 in recruitment is well appreciated, how

MYOD1 is itself recruited is less clear. We find that early opening

sites are enriched forMEIS1motifs and constitutiveMYOD1bind-

ing. Meis1 has previously been reported to tether Myod1 to the

inactive myogenin promoter prior to the onset of differentiation

and is required formyogenin activation and chromatin remodeling

that permits the binding of MYOD1 to nearby MRF E-boxes that

were previously inaccessible (Berkes et al., 2004; Maves et al.,
10 Molecular Cell 71, 1–14, September 6, 2018
2007; de la Serna et al., 2005). Whether MEIS1/PBX1 acts to

tether MYOD1 to inactive chromatin more generally throughout

the genome has remained an open question.

Our analyses suggest that MEIS1 and its cofactor PBX1 are

required for chromatin remodeling at a large fraction of sites

that normally open during myoblast differentiation by serving

as initial recruitment sites for epigenetic remodeling enzymes.

Binding of p300 to MEIS1/PBX1-tethered MYOD1 could then

acetylate histones at all DNA elements physically nearby in the

chromatin hub. This model may help explain the pervasive gains

and losses of histone acetylation throughout the accessible

genome, despite the smaller number of differentially accessible

or MYOD1-bound elements. Although we cannot exclude the

possibility that some of the defects in chromatin remodeling

are due to secondary effects downstream of MEIS1/PBX1, our

genome-wide analysis taken together with biochemical and

genomic data from previous studies support a direct role for

MEIS1/PBX1 in recruiting factors that activate chromatin hubs.

Cicero provides an effective, genome-wide means of gener-

ating candidate links between regulatory elements and target

genes in a tissue or cell type of interest using data from a single

experiment. The chromatin hubs that it defines will facilitate the

construction of quantitative models of epigenetic and gene

expression dynamics, as well as the identification of genes

whose dysregulation underlies GWAS associations. As the field

pursues organism-scale cell atlases that comprehensively

define each cell type and its molecular profile, such regulatory

maps will be essential for understanding the epigenetic basis

of each cell type’s gene expression program, in both health

and disease.
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Limitations
The primary limitation of Cicero is the putative nature of the reg-

ulatory connections it identifies. Determining whether a distal

DNA element is necessary or sufficient to exert regulatory influ-

ence on the genes Cicero links to it requires downstream exper-

imentation. We note that proximity ligation-based methods for

linking DNA elements to genes such as ChIA-PET or promoter

capture Hi-C also have this limitation; proximity does not defini-

tively mean regulatory interaction. Moreover, although we have

found that our overall comparisons with available proximity liga-

tion-based data are concordant, some individual connections

are missing from one or both sets of putative interactions, and

it is not clear which should be considered more reliable. On the

one hand, ligation is a molecular measurement (albeit an indirect

one) of physical proximity, while Cicero’s links are based on

computational inference. One the other, the ligation assays dis-

cussed here operate on bulk cell populations and are therefore

subject to the artifacts introduced by averaging cells of different

types or states, while Cicero operates at single-cell resolution.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Skeletal Muscle Myoblasts (HSMM)
HSMMderived from quadriceps biopsy (Lonza, catalog #CC-2580, lot #257130: healthy, age 17, female, of European ancestry, body

mass index 19; cells were used within 5 passages of purchase) were cultured in skeletal muscle growth media (GM) using the

SKGM-2 BulletKit (Lonza). The cells and differentiation protocol are those from Trapnell et al. (2014). Cells were seeded in 15 cm

dishes, media was replenished every 48 hr and cells were allowed to reach 80%–90% confluence. Differentiation was induced at

time 0 via a switch to differentiation medium (DM) composed of alpha-mem (Thermo Fisher Scientific) and 2% horse serum. Cells
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in GM (time 0) or DM were then harvested at the specified times and processed as described below. HSMM tested negative for

mycoplasma contamination within 3 weeks of the experiment.

GM12878
GM12878 (purchased fromCoriell Cell Repository) was cultured in RPMI 1640medium (GIBCO 11875) supplemented with 15%FBS,

100U/ml penicillin and 100 mg/ml streptomycin. Cells were cultured in an incubator at 37�Cwith 5%CO2 andwere split to a density of

300,000 cells/ml three times a week.

54-1 Immortalized Human Myoblasts
54-1 humanmyoblasts (Krom et al., 2012; Snider et al., 2010) were a kind gift from Dr. Robert Bradley and Dr. Silvere van der Maarel.

For expansion, 54-1 cells were cultured in high serum media containing 20% FBS, 1% penn-strep, 10 ng/mL recombinant human

FGF and 1 mM dexamethasone in F-10 media. For myoblast differentiation, media was replaced with low serum media containing

1% horse serum, 1% penn-strep, 10 mg/mL insulin and 10 mg/mL transferrin in F-10 media.

METHOD DETAILS

Sci-ATAC-Seq Library Construction
We prepared sci-ATAC-seq libraries using an improved version of the original protocol (Cusanovich et al., 2015), with improvements

reported in the related paper (Cusanovich et al., 2018). Briefly, HSMM cells were harvested at defined times post switch to DM,

washed and cells were lysed to obtain nuclei by resuspending cells in cold lysis buffer (CLB, 10 mM Tris HCL pH7.4,

10 mM NaCl, 3 mM MgCl2 and 0.1% IGEPAL CA-130) supplemented with protease inhibitors (Sigma). For each time point,

2.75 3 105 nuclei were resuspended in a mix of 990 mL of CLB supplemented with protease inhibitors and 1.1 mL of Tagment

DNA buffer (Illumina), and divided evenly among the wells of a 96 well LoBind plate (Eppendorf). 1 mL of uniquely barcoded Tn5 (Illu-

mina) was added to each well followed by incubation at 55�C for 30 min. Following Tn5 incubation, 20 mL of a solution containing

40 mM EDTA and 1 mM spermidine were added to each well and incubated at 37�C for 15 min. Tagmented nuclei were pooled,

stained by addition of DAPI to a final concentration of 3 mM and 25 DAPI positive nuclei were sorted into the wells of 96 well LoBind

plates containing 12.5 ml of 0.8 mg/mL BSA and 0.04% SDS in EB buffer (QIAGEN). Nuclei were lysed by incubation at 55�C for

15 min. ATAC libraries were PCR amplified by addition of unique combinations of P5 and P7 primers for each well of sorted nuclei

and PCR conditions were such that amplification did not reach saturation. For each sorted 96 well plate ATAC libraries were pooled

and products cleaned using the Zymo Clean & Concentrator kit (Zymo). Libraries were quality controlled by analyzing on PAGE gels

and quantified using the Qubit broad range DNA quantitation kit (Thermo Fisher Scientific).

Bulk ATAC-Seq Library Construction
Bulk ATAC-seq experiments were performed as previously described (Buenrostro et al., 2013). Briefly, cells were trypsinized,

washed with PBS and resuspended in cold-lysis buffer (CLB: 10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mMMgCl2 and 0.1% IGEPAL

CA-630) supplemented with protease inhibitors (Sigma) to obtain nuclei. 100,000 nuclei were pelleted, resuspended in CLB and the

equivalent of 20,000 nuclei were transferred, mixed with Tagment DNA buffer and Tn5 enzyme (Illumina). Reactions were incubated

at 37�C for 30 min and purified using the MinElute kit (Zymo). Sequencing adapters and indices were added via PCR using standard

Nextera P5 and P7 primers with excess primers removed using a 1X Ampure cleanup (Agencourt). Libraries were quality controlled by

examining on a PAGE gel and quantified using the Qubit broad range DNA assay (ThermoFisher Scientific).

54-1 Knockout Construction
Oligos containing sequences for single guide RNAs (sgRNAs) targeting PBX1, MEIS1 and non-targeting controls were designed as

follows:

50-tatcttGTGGAAAGGACGAAACACC[G]-[20bp sgRNA]-gttttagagctaGAAAtagcaagttaaaataagg-3

corresponding to the following form:

[U6 homology]-[sgRNA]-[sgRNA backbone homology]

The sgRNA sequences targeting MEIS1, PBX1 and non-targeting controls are shown in Table S1.

Oligos were ordered from IDT and made double stranded by PCR using primers that bind the U6 and sgRNA backbone homology

sequences. Oligos corresponding to each sgRNA were then ligated using the In-Fusion HD kit (Clontech) into BsmBI and alkaline

phosphatase digested lentiCRISPRv2-Blast (Addgene, #83480). Ligations were then transformed into Stellar Competent cells (Clon-

tech), bacteria grown overnight in LB containing ampicillin and plasmids recovered using the QIAGEN MiniPrep kit. Lentivirus was

generated by transfection into HEK293T using the ViraPower packaging mix and viral containing supernatant was filtered using a

45 mm steriflip vacuum filter (Fisher Scientific). 54-1 cells were transduced with filtered virus, cultured for 48 hr and sgRNA containing

cells selected by incubation with 5 mg/mL blasticidin. Cells were expanded for 21 days post-selection to allow for genome editing

prior to myoblast differentiation experiments and bulk ATAC-seq.

Differentiation was induced in 54-1 lines as described for HSMM. Bulk ATAC-seq was conducted on day 0 and day 7 after

induction.
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54-1 Staining
At various times along the differentiation protocol, 54-1 cells were washed with PBS, fixed by incubating for 20 min in 4% PFA (Elec-

tron Microscopy Sciences) in PBS and an additional 10 min in 100% methanol (Sigma). Samples were washed twice with IF buffer

(0.2% Triton X-100 and 5% w/v bovine serum albumin in PBS) and incubated with anti-myosin MF20 antibody (eBioscience) over-

night at 4�C with rotation. After primary antibody incubation, samples were washed twice with IF buffer and incubated with donkey

anti-mouse Alexa Fluor-594 secondary antibody (Molecular Probes) and 5 mM DAPI. Finally, samples were washed twice with IF

buffer, PBS added and myosin staining assessed by imaging on a Zeiss Axio Observer (Carl Zeiss Microimaging).

QUANTIFICATION AND STATISTICAL ANALYSIS

Processing of Raw Data
For sci-ATAC-seq, raw reads were processed identically to those in Cusanovich et al. (2018) enclosed. Details are reproduced here

for clarity. Briefly, BCL files were converted to fastq using bcl2fastq v2.16 (Illumina). Barcodes were corrected using a custom python

script such that if a barcode component (tagmentation or PCR barcode separately) was within 3 edits from an expected barcode

component, and the next best matching barcode component was at least 2 further edits away, the barcode component was cor-

rected to the best match. Reads of barcode components that were not unambiguously assignable to an expected barcode were

discarded.

Reads were mapped to the hg19 reference genome using bowtie2 with non-default options ‘-X 2000 �3 1’ (Langmead and Salz-

berg, 2012). Readswithmapping quality less than 10were filtered. PCR duplicates were removed using a custom python script. Cells

with low read counts were removed. The read count cutoff was determined by identifying the trough between the peaks of the

bimodal distribution of read counts using the mclust package in R (Scrucca et al., 2016).

For the bulk ATAC-seq datasets, processing was done as above, but without barcode correction.

Defining Accessible Sites
To define peaks of accessibility across all sites, we used the MACS (version 2.1.1) (Zhang et al., 2008) peak caller. Specifically, we

used macs2 callpeak, with the following non-default options:–nomodel–extsize 200–shift �100–keep-dup all. Reads from the

ENCODE blacklist (ENCFF001TDO) were excluded from peak-calling. Promoter peaks were further defined as the union of the an-

notated transcription start site (TSS) (Gencode V17) minus 500 base pairs, andMACS defined peaks upstream of the TSS. Cells were

determined to be accessible at a given peak if a read from that cell overlapped the peak. Peaks were called as above for both of the

HSMM experiments separately, and then the union of the two peak sets was used.

For the GM12878 and HL60 mixed dataset, preliminary peaks were called by MACS and used to separate the cell types using

multi-dimensional scaling by Jaccard distance. The subset of reads from GM12878 cells was then used to recall peaks for

GM12878 as above.

After accessible peaks were defined, a matrix was generated for each dataset with the count of reads from each cell or time point

(in bulk) that overlapped each accessible peak.

Pseudotemporal Ordering
For the HSMMdataset, contaminating interstitial fibroblasts were removed in silico based on the absence of promoter accessibility in

any of several known muscle markers (MYOG, MYOD1, DMD, TNNT1, MYH1, MYH3, TPM2). In addition, cells with fewer than 1,000

accessible sites were excluded due to low assay efficiency. Finally, peaks present in less than 1% of cells were excluded during

pseudotemporal ordering steps.

Despite improvements to the sci-ATAC-seq protocol that delivered a substantial increase in the number of sites detected per cell,

sci-ATAC-seq data remain zero-inflated. The quality and efficiency of transposition, which varies between cells and across batches,

is likely to be a major technical source of variation in the data. Simple dimensionality reduction techniques such as MDS show that a

poorly assayed cell is oftenmore similar to other poorly assayed cells of a different type than towell-assayed cells of the same type. In

order to accurately group cells with similar chromatin accessibility profiles, we first clustered peaks that were within 1 kb and

summed the reads overlapping them to create an integer-valued count matrix M.

To order the cells by progress through differentiation, we determined which aggregated peaks were relevant to the HSMM time

course by fitting the following model:

InðMiÞ= b0 + bT + bSS

WhereMi is themean of a negative binomially distributed random variable for the number of reads overlapping the aggregate region i,

T encodes the times at which each cell was harvested and S is the total number of accessible sites in each cell. We compared this full

model to the reduced model:

InðMiÞ= b0 + bSS

by likelihood ratio test. This approach has been shown to improve power for single-cell RNA-seq transcript counts compared to sim-

ple two-group tests comparing cells at the beginning and the end of a trajectory (Qiu et al., 2017a, 2017b). Sites determined by this
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method to be time dependent and which were accessible in less than 10% of cells were then used to reconstruct the pseudotime

trajectory using Monocle 2 (parameters ncenter and param.gamma set to 100, see Qiu et al., 2017a). To remove any bias created

by different assay efficiency in different cells, total sites accessible was included as a covariate in the tree reconstruction. Each

cell was assigned a pseudotime value based on its position along the trajectory tree. Cells that mapped to the F2 branch were

excluded from downstream analysis.

Differential Accessibility Analysis
When testing for differential accessibility across cells at a particular site, it is important to exclude technical variation due to differ-

ences in assay efficiency as discussed above. We first grouped cells at similar positions in pseudotime. We did this by k-means clus-

tering along the pseudotime axis (k = 10). These clusters were further subdivided such into groups containing at least 50 and nomore

than 100 cells. Next, we aggregated the binary accessibility profiles of the cells in each group into a matrix A, so that Aij contains the

number of cells in group j for which DNA element i is accessible. The average pseudotime jj and average overall cell-wise accessi-

bility Sj for cells in each group i were preserved for use during differential analysis.

To determine which peaks of accessibility were changing across pseudotime, we fit the following model to the binned data:

InðAiÞ= b0 + b~j
~j+ b ~S

~S

Where Ai is the mean of a negative-binomial valued random variable of cells in which site i is accessible, and the tilde above j and S

indicates that these predictors are smoothed with natural splines during fitting. This model was compared to the reduced model:

InðAiÞ= b0 + b~s
~S

by the likelihood ratio test. Peaks with an adjusted p value of less than 0.05 were determined to be dynamic across pseudotime.

Gene Set Enrichment Analysis
Gene set enrichment analyses was conducted using the R package piano (V€aremo et al., 2013) using a hypergeometric test. We

tested against the Human GO Biological Processes gene set from Merico et al. (2010).

Cicero
Cicero aims to identify all pairs of co-accessible sites. The algorithm takes as input a matrix of m by n binary accessibility values A,

where Amn is zero if no read was observed to overlap peak m in cell n and one otherwise. The algorithm also requires either a pseu-

dotemporal ordering of the cells along a developmental trajectory (e.g., with Monocle 2) or the coordinates of the cells in some suf-

ficiently low dimensional space (e.g., a t-SNE map) that the cells can be readily clustered. The algorithm then executes the following

steps, which are detailed in the sections below: first, groups of highly similar cells are sampled using the clustering or pseudotem-

poral ordering, and their binary profiles are aggregated into integer counts. Second, these counts are optionally adjusted for user-

defined technical factors, such as experimental batch. Third, Cicero computes the raw covariances between each pair of sites within

overlapping windows of the genome. Within each window, Cicero estimates a regularized correlation matrix using the graphical

LASSO, penalizing pairs of distant sites more than proximal sites. Fourth, these overlapping covariance matrices are ‘‘reconciled’’

to produce a single estimate of the co-accessibility across groups of cells. These co-accessibility scores are reported to the user,

who can extract modules of sites that are connected in co-accessibility networks by first specifying aminimum co-accessibility score

and then using the Louvain community detection algorithm on the subgraph induced by excluding edges below this score.

Grouping Cells

In principle, Cicero could analyze the sample covariance computed between the vectors xi and xj of binary values encoding acces-

sibility across cells for a pair of sites i and j. However, rather than working with the binary data directly, Cicero groups similar cells and

aggregates their binary accessibility profiles into integer count vectors that are easier to work with in downstream steps. Under the

grouping discussed below, the number of cells in which a particular site is accessible can be modeled with a binomial distribution or,

for sufficiently large groups, the corresponding Gaussian approximation. Modeling grouped accessibility counts as normally distrib-

uted allows Cicero to easily adjust them for arbitrary technical covariates by simply fitting a linear model and taking the residuals with

respect to it as the adjusted accessibility score for each group of cells.

In order to control for technical variation as discussed above, Cicero operates on a grouped cell count matrix, C. C is constructed

by first mapping cells into low dimensions by either Monocle 2 or tSNE. Within this space, Cicero constructs a k-nearest neighbor

graph, via the the FNNpackage (Beygelzimer et al., 2013), which is based on KD-trees and is highly efficient, scaling to large numbers

of cells. Cicero then samples random cells and their k nearest neighbors (default k = 50) are grouped. Random cells continue to be

chosen and grouped until no new group may be created that does does not overlap an existing group by less than 90% of members.

Accessibility counts are then summed across all cells in a group to create countmatrixC. Cicero’s grouping procedure can be viewed

as a type of bootstrap aggregation, or ‘‘bagging’’ (Breiman, 1996), which has been shown to substantially improve the stability of a

variety of algorithms in machine learning. Note that with these parameter settings in a typical experiment, a cell will be part of more
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than one group and therefore the groups will sometimes contain some of the same cells, which could in principle inflate co-acces-

sibility scores across cells. However, in practice in our analyses of both GM12878 and HSMM, the median number of cells shared

between pairs of groups is zero.

Adjusting Accessibility Counts for Technical Factors

To normalize for variations in assay efficiency across groups, matrix C is divided by a group-wise scaling factor (computed using the

standardMonocle 2method for library size calculations (estimateSizeFactors()) to create an adjusted accessibility matrix R. Because

the entries ofC are integer counts that can reasonably be approximated byGaussian distributions, this matrix can be readily adjusted

for arbitrary technical covariates (e.g., using the Limma package’s removeBatchEffect() function). In this study we did not adjust for

factors beyond library size.

Computing Co-accessibility Scores between Sites

Cicero next analyzes the covariance structure of the adjusted accessibilities inR. Given enough data, Cicero could in principle simply

compute the raw covariancematrixU. However, because the number of possible pairs of sites is far larger than the number of groups

of cells, Cicero uses the Graphical Lasso to compute a regularized covariance matrix to capture the co-accessibility structure of the

sites. The Graphical LASSO computes the inverse of the sample covariance matrix, which encodes the partial correlations between

those variables as well as the regularized covariance matrix (Friedman et al., 2008). These constitute a statistically parsimonious

description of the correlation structure in the data: informally, two variables are partially correlated when they remain correlated

even after the effects of all other variables in the matrix are excluded. The Graphical LASSO expects a small fraction of the possible

pairs of variables to be partially correlated, preferring to select a sparse inverse covariance matrix over a dense one that fits the data

equally well. Those pairs of sites that lack sufficient partial correlation to be worth the penalty term are assigned zero partial corre-

lation in the inverse covariance matrix reported by Graphical LASSO. Formally, Cicero uses Graphical LASSO to maximize:

logdetQ� trðUQÞ � kQ � r k 1

WhereQ is the inverse covariance matrix capturing the conditional dependence structure of p accessible sites, and U is the sample

covariance matrix computed from their values in R. In order to ensure stability of GLASSO, which can hang on poorly conditioned

input, we add a small conditioning constant of 1e-4 to the diagonal of U prior to running it. The matrix r contains penalties that

are used to independently penalize the covariances between pairs of sites, and * denotes component-wise multiplication.

In Cicero, we aim to find local cis-regulatory interactions, rather than global covariance structure that might be expected due to

overall cell state. To achieve this, we set each penalty term in r such that peaks closer in genomic distance had a lower penalty

term. Specifically, we used the following equation to determine r:

rij =
�
1� d�s

ij

�
a

Where dij is the distance in the genome (in kilobases) between sites i and j and s is a constant that captures the power-law distribution

of contact frequencies between different locations in the genome as a function of their linear distance. A complete discussion of the

various polymermodels of DNA packed into the nucleus is beyond the scope of this paper, but we refer readers to Dekker et al. (2013)

for a discussion of justifiable values for s. We use a value of 0.75 by default in Cicero, which corresponds to the ‘‘tension globule’’

polymer model of DNA (Sanborn et al., 2015). The scaling parameter a controls the distance at which Cicero expects no meaningful

cis-regulatory contacts, and its value is calculated automatically from the data. To calculate a, Cicero selects 100 random 500 kb

genomic windows, and determines the minimum a value such that no more than 5% of pairs of sites at a distance greater than

250 kb (a user-adjustable value) had non-zero entries in Q and less than 80% of all entries in Q were nonzero. The mean of these

values of a is then used to set the penalties for the whole genome. Cicero then applies Graphical LASSO to overlapping 500 kb win-

dows of the genome (windows are spaced by 250 kb such that each region is covered by two windows).

Reconciling Overlapping Local Co-accessibility Maps

Cicero calculates correlation values (co-accessibility scores) from the resulting estimated sparse covariance matrix for each pair of

peaks within 500 kb of each other. Because the genomic windows are overlapping, the majority of pairs of peaks have two calcu-

lations of co-accessibility. To consolidate these sites and create a genome-wide map of the accessible regulome, Cicero considers

the co-accessibility scores for each pair of peaks to determine if they are in qualitative agreement (both calculated scores in the same

direction). The qualitative agreement in our two test datasets were both >95%. Pairs of peaks not in qualitative agreement are consid-

ered undetermined. For peaks in qualitative agreement, the mean score of the two values is assigned.

Extracting cis-Co-accessibility Networks (CCANs)

Positive Cicero co-accessibility scores indicate that a pair of peaks is connected, with the magnitude of the co-accessibility corre-

sponding to Cicero’s confidence in the link. To identify hubs of co-accessibility, Cicero can create a graph where each node is a peak

of accessibility, and edges are the co-accessibility scores above a user-defined threshold. Communities within this genome-wide

graph can be found using the Louvain community finding algorithm. Cicero can then assign peaks to cis-co-accessibility networks

(CCANs) based on these communities.

Calculating Gene Activity Scores

Cicero calculates an overall measure of the accessibility of sites linked to each gene k by first selecting rows of the binary accessibility

matrix A that correspond to sites proximal to the gene’s transcription start sites or to distal sites linked to them. These rows, are
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weighted by their co-accessibility and then summed to produce a vector of accessibility scores Rk, where the overall accessibility of

gene k in cell i is:

Rki =
X
p˛P

X
j˛Dp

Aji

upjP
k˛Dp

upk

+Api

Where P indexes the promoter proximal sites of k,Dp indexes distal sites linked to proximal site p, and u is the Cicero co-accessibility

score linking distal site j to proximal site p, and A is the binary score for accessibility at site j or p in cell i. In principle, Dp could include

all distal sites linked to p, but here we restrict the set to distal sites that are differentially accessible (FDR < 1%) across pseudotime.

Because the magnitude of these aggregate accessibility values will depend on overall sci-ATAC-seq library depth in each cell, we

capture this relationship via a linear regression:

log

 X
k

RK

!
= b0 + bA log

 X
j

Aji

!

The aggregate accessibility for each gene k in cell i is then scaled using the output of this model ri for cell i:

~Rki =Rki,

P
i ri
ri

Gene expression values measured by RNA-seq are typically approximately log-normally distributed. We therefore transform aggre-

gate accessibility values to gene ‘‘activity’’ scoresGki for each gene k in each cell i by simply exponentiating them.We also scale them

by the total (exponentiated) gene accessibility values to produce ‘‘relative’’ activities:

Cki =
e

~RkiP
ke

~Rki

Comparing Two Cicero Maps

Different Cicero CCAN maps were matched using the push-relabel algorithm for maximum matching in a weighted bipartite graph

(Goldberg and Tarjan, 1986). Specifically, we used the maxmatching package in R to calculate the matching. Maximum matching

in weighted bipartite graphs is a one-to-one matching such that the edge weights are maximized. In the case of comparing Cicero

CCAN maps, the maximum matching is the one-to-one match of CCANs from map 1 to CCANs from map 2 such that the largest

number of peaks is shared across the maps overall.

Analysis of 54-1 Immortalized Myoblasts
Bulk ATAC-seq libraries from 54-1 cells were processed as above. Data from the multiple guides at each time point and targeting

each gene were merged for peak calling as described above. The resulting peaks were merged to create a master peak list. Reads

per peak were then counted for each guide and time point separately. DESeq2 (Love et al., 2014) was used to test for differential

accessibility between day 0 and day 7 across each of the three conditions (non-template control, MEIS1 targeted and PBX1 tar-

geted). Two libraries (NTC guide 5 day 0 and PBX1 guide 4 day 7) were removed as major outliers by PCA. Peaks with a greater

than 2-fold moderated fold change were considered to be dynamic. When comparing 54-1 peaks to HSMM peaks, overlap was

determined by overlapping coordinates with a maximum gap of zero.

Motif Enrichment Analysis
Transcription factor motifs from the JASPAR 2016 database (Mathelier et al., 2016) were located in the sci-ATAC-seq peaks using

FIMO (Grant et al., 2011). Motifs for TFs not expressed atR2 transcripts per million in bulk RNA-seq (HSMMmyoblasts or myotubes)

were excluded from downstream analysis. Many TF motifs are similar or identical to each other. To prevent this correlation from con-

founding regression analyses, we clustered motifs into motif families. For each pair of motifs A and B, we computed the conditional

probability that given motif A is called at a genomic location with a FIMO p value < 2e-5 (a stringent threshold), an overlapping

instance of motif B will be called at p < 1e-4 (a permissive threshold). We constructed an undirected graph of motifs where there

is an edge between motifs A and B if P(B at p < 1e-4 j A at p < 2e-5) R 0.5 or P(A at p < 1e-4 j B at p < 2e-5) R 0.5. Edges in this

graph are assigned weights equal to the greater of these two conditional probabilities minus 0.5. We clustered the motifs on this

graph using Louvain clustering (Blondel et al., 2008) and manually assigned names to each cluster. For downstream regression

analyses, a genomic location is considered to have an instance of a motif family if any motif in the family is called at that location

at p < 5e-5 (an intermediate threshold).

To generate the motif co-accessibility networks shown in Figure S6A, we computed two sets of binary variables for each protein

coding gene that had at least one sci-ATAC-seq peak in its promoter(s). The first set of variables are indicators of whether or not at

least one instance of a motif family is present in any promoter peak for the gene. The second set of variables are indicators of whether

or not at least one motif instance is present in any distal peak (excluding promoters of other genes) connected to the gene’s pro-

moter(s) with a co-accessibility score greater than 0. We constructed a matrix where rows are genes and columns are these two

sets of motif indicator variables. This matrix was provided as input to the Graphical LASSO subject to the constraint that partial
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correlations between two promoter motif variables or two distal motif variables are fixed to zero. The regularization parameter r for

the Graphical LASSOwas set as the smallest value that could achieve an estimated false discovery rate (FDR, the proportion of truly-

zero partial correlations that are estimated as non-zero) of less than 5%. The FDR for a given value of rwas estimated by running the

Graphical LASSO with that value of r on versions of the motif indicator matrix with the distal variables row-shuffled (essentially as-

signing each gene to a random other gene’s set of distal motifs) and counting the proportion of motif pairs that are assigned a non-

zero partial correlation (ideally, all should be zero in a shuffled matrix).

In Figure S6A, an edge is drawn between a pair of motif families A and B if both 1) the co-accessibility of the indicator variable for A

being at a distal site to the indicator variable of B being at a linked promoter site is >0.02, and 2) the same is true if B is in the distal

position and A is in the promoter.

Analysis of ChIA-PET and Hi-C Data
To compare our Cicero connections to promoter-capture (PC) Hi-C, we used publicly accessible GM12878 data (Cairns et al., 2016).

We used the provided ChICAGO score as our indicator of physical proximity.

To compare our data to PC Hi-C, we first overlapped our peaks with peaks from PCHi-C. Peaks were considered to overlap if they

were within 1 kb of each other. For this analysis, we only considered pairs of sci-ATAC-seq peaks where at least one was a promoter

represented in the PC Hi-C data. In addition, we only considered pairs of peaks that were within the same A/B compartment to avoid

potential confounding of cross-compartment connections (Fortin and Hansen, 2015). To check that the effect of a pair of peaks’ co-

accessibility on presence in the dataset in Figure 4C was beyond the effect of the overall accessibility of the peaks, we ran a logistic

regression predicting presence of the pair in PC Hi-C using binned co-accessibility and the geometric mean of the accessibility of the

two peaks in the pair and found the coefficient for co-accessibility to be significant (p value < 2e-16).

As a second comparison dataset, we used publicly accessible GM12878 polII ChIA-PET data (Tang et al., 2015) (GSE72816). To

compare these data to Cicero’s connections, we first looked for overlap between our peaks, and ChIA-PET anchors. Because ChIA-

PET anchors often overlap each other, we first merged overlapping anchors to create comparable ChIA-PET ‘‘peaks.’’ We consid-

ered accessible peakswithin 1 kb of ChIA-PET peaks to be overlapping. To generate Figures 4B and 4D, we considered the subset of

ChIA-PET and Cicero connections where the peaks were present in both datasets. Similarly as for PC Hi-C, to check that the effect of

a pair of peaks’ co-accessibility on presence in the dataset in Figure 4Bwas beyond the effect of the overall accessibility of the peaks,

we ran a logistic regression predicting presence of the pair in ChIA-PET using binned co-accessibility and the geometric mean of the

accessibility of the two peaks in the pair and found the coefficient for co-accessibility to be significant (p value < 2e-16).

Analysis of ChIP-Seq Data (MYOD1 and Histone)
To compare our accessible peaks to the known myogenesis master regulator MYOD1, we used publicly accessible MYOD1 ChIP-

seq in human myoblast and human myotube (MacQuarrie et al., 2013) (GEO: GSE50413). We considered our peaks to be bound by

MYOD1 if they overlapped one of the annotated MacQuarrie et al. (2013) ChIP-seq peaks.

To compare our accessible peaks to histone modifications, we used publicly accessible ENCODE datasets in HSMM and

HSMMtube (ENCODE Project Consortium, 2012) (ENCFF000BKV, ENCFF000BKW, ENCFF000BMB, ENCFF000BMD,

ENCFF000BOI, ENCFF000BOJ, ENCFF000BPL, ENCFF000BPM).We counted both HSMMandHSMMtube histone ChIP-seq reads

in each accessible peak. To determine whether sites were changing in accessibility between HSMM and HSMMtube, we used

DESeq2 differential analysis (Love et al., 2014) (FDR < 5%). To determine whether the barrier regions of genes were differentially his-

tone modified, we similarly used DESeq2 to compare the read counts in the first 1000 base pairs of each GENCODE v17 transcript in

HSMM and HSMMtube datasets.

To compare agreement between H3K27 acetylation marks of peaks connected by Cicero, we divided the odds of a site gaining

acetylation if its connected site gained acetylation by the odds of a site gaining acetylation is it is connected to a site that is not gaining

acetylation (Figure 5A).

Modeling H3K27 Acetylation Changes
To model changes in acetylation among linked sites (Figure 5D), we compared four linear regression models:

InðaiÞ= b0 + b1Aicl + b2Aiop

InðaiÞ= b0 + b1Aicl + b2Aiop + b3mig + b4mil + b5mic

InðaiÞ= b0 + b1Aicl + b2Aiop + b3qop + b4qcl
InðaiÞ= b0 + b1Aicl + b2Aiop + b3mig + b4mil + b5mic + b6qmg + b7qml + b8qmc

where ai is the log2 fold-change in H3K27 acetylation from myoblast to myotube at site i, Aicl and Aiop are indicator variables for

whether site i is closing or opening across pseudotime, mig, mil, and mic are indicator variables for whether site i is gaining, losing,

or constitutively bound by MYOD1 from myoblast to myotube according to ChIP-seq, qop and qcl are the highest Cicero co-acces-

sibility scores that connect site i to another opening or closing site respectively, and qmg, qml and qmc are the highest Cicero co-acces-

sibility scores that connect site i to another MYOD1 gaining, MYOD1 losing or MYOD1 constitutive site. For each of the fittedmodels,

we used elastic net regression (Zou and Hastie, 2005) to estimate the effect of each predictor.
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Similarly, in Figure S6B, we predict the log2 fold-change in each of the 12 ENCODE histone mark ChIP-seq datasets described

above using only indicator variables for whether a site is gaining losing or constitutively bound by MYOD1, or using these variables

and the highest Cicero co-accessibility scores connecting a site to an opening or closing site.

Regression Models for Barrier Region Histone Marks and Gene Expression
For each of the 12 ENCODE histonemark ChIP-seq datasets described previously, we fit two regressionmodels that predict, for each

transcription start site, the log fold change in the number of reads from the given ChIP-seq dataset that fall in the barrier region of that

TSS (first 1000 bp downstream) for myotubes versusmyoblasts. We exclude TSSs that do not have a significantly different number of

barrier region reads in myotubes versus myoblasts for any of the 12 datasets (p > 0.01), leaving 5,563 TSS included in the model.

In the first set of models (‘‘promoter motifs’’), the features are a set of binary indicator variables that have value 1 if any promoter

sci-ATAC-seq peak for the TSS has at least one instance of a motif from a given motif family. In the second set of models (‘‘promoter

and distal motifs’’), the features are the promoter motif indicator variables plus a second set of real-valued variables that encode the

presence of distal sequence motifs. For a given motif family and TSS, the corresponding distal motif variable has a value equal to the

highest co-accessibility score from any promoter sci-ATAC-seq peak for that TSS to any connected distal peak that has at least one

instance of a motif from the motif family. If no such distal peak exists (the motif is absent in all connected distal sites), the distal motif

variable is assigned a value of 0. The models were trained using elastic net regression.

We additionally fit models with the same features (‘‘promoter motifs’’ and ‘‘promoter and distal motifs’’) to predict the expression of

the subset of the above TSSs (n = 937), that were additionally expressed in at least 4 cells in sc-RNA-seq andwhichwere predicted by

smoothed average across pseudotime to be expressed at above 1 copy per cell at some pseudotime.

DATA AND SOFTWARE AVAILABILITY

Data Availability
The accession number for the sci-ATAC-seq data reported in this paper is GEO: GSE109828.

Code Availability
Cicero is available as an R package at http://cole-trapnell-lab.github.io/cicero-release.
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Supplemental Figure 1. Chromatin accessibility profiles of differentiating myoblasts are 
highly reproducible, related to Figure 1. A) Spearman correlation heatmap between pairs of 
chromatin accessibility profiles as measured by bulk ATAC-seq, DNase-seq, and aggregated sci-
ATAC-seq from 0 and 72 hours. MACS was used to call new peaks on each dataset; these peaks 
were merged, and reads were counted in each peak from each dataset. These counts were used 
to calculate Spearman correlations. B) Venn diagram illustrating reproducibility in MACS2 peaks 
calls between independent sci-ATAC-seq experiments. Peaks in the intersection correspond to 
DNA elements called in both experiments. C) Boxplot of the number of MACS-called sci-ATAC-
seq peaks per cell. Promoter-proximal peaks are peaks intersecting the first 500 base pairs 
upstream of a transcription start site (see Methods). Distal peaks are all other peaks. D) Monocle 
trajectories on each of the sci-ATAC-seq experiments. The top panel is identical to Figure 1C and 
included for comparison purposes. 
 
 



 
Supplemental Figure 2. DNA elements that open during differentiation are enriched for 
muscle related promoters, related to Figure 2. A) Heatmap of accessibility across pseudotime. 
Color represents the percent of cells per bin that are accessible at a given DNA element. Each 
row indicates a different DNA element, each column represents a bin of approximately even 
numbers of cells divided by pseudotime. Rows are in the same order as Figure 2A. B) Gene set 
enrichment analysis of significantly opening and closing accessible sites. Adjusted p-values were 



computed using a hypergeometric test. Terms shown are all sites with an adjusted p-value < 1e-
6 in either the opening set or the closing set. Color represent the -log10 adjusted p-value. Sites 
are ordered by the -log10 adjusted p-value of the opening set. C) Smoothed pseudotime-
dependent accessibility curves, generated by a negative binomial regression of each for a set of 
selected cell cycle relevant genes. Each row indicates a different DNA element. Annotation 
column represents the -log10 adjusted p-value for the test of differential accessibility across 
pseudotime. For visualization, fitted curve range was capped at 100. D) Percent of dynamic and 
static sites with changing Segway state assignment from myoblast to myotube.  
 
 
 
 
 
 
 
  



 
 
Supplemental Figure 3. Cicero gene activity scores correlate with gene expression, related 
to Figure 3. A) The median number of linked distal sites per promoter and promoters per distal 
site as a function of the co-accessibility threshold of the links considered. Dashed lines indicate 
experiment 2. Solid lines indicate experiment 1. B) Average Cicero gene activity scores across 
cells in phase 1 compared to their average expression from sc-RNA-seq libraries from myoblasts. 
Cicero gene activity scores were computed by summing the reads falling in distal sites linked to 
a gene’s promoter (see Methods for details). C) Top panel: Log2 fold changes in mean 
accessibility at gene promoters for genes that are significantly up- (red) or down-regulated (blue) 
between 0 and 72 hours as measured by sc-RNA-seq. Bottom panel: corresponding changes in 
Cicero gene activity scores. D) Top panel: comparison of log2 fold changes between expression 
and promoter accessibility. Bottom panel: fold changes in expression versus changes in Cicero 
gene activity scores. Black lines indicate perfect concordance between log2 fold changes, while 
blue lines indicate linear regressions between Cicero activity or promoter accessibility and 
expression. 
 
 
 
 
 
 
 
 
 



 
Supplemental Figure 4. Cis-co-accessibility networks (CCANs) maintain properties at 
varying cutoffs, related to Figure 3. A) Boxplots of the length in the linear genome (in kilobases) 
of CCANs formed at varying thresholds of co-accessibility in experiment 1. CCANs are defined 
as groups with 3 or more co-accessible DNA elements identified with Louvain community 
detection. Prior to running Louvain, connections below the indicated Cicero co-accessibility score 
are excluded (see Methods for details). B) Boxplots of the number of sites in CCANs formed at 
varying thresholds of co-accessibility. C) Boxplots of the number of expressed gene (at a level of 
10 transcripts per cell on average in sc-RNA-seq) promoters per CCAN at increasing co-
accessibility score cutoffs. D) Percent of sites recruited into a CCAN at increasing co-accessibility 
score cutoff. Colors represent subsets of sites: green represents promoters for genes that are 
expressed; orange and red represent sites that are accessible and differentially accessible across 
pseudotime, respectively. E) Number of CCANs identified with varying co-accessibility cutoffs. 
Blue series shows the total number of CCANs, orange shows the number of CCANs that include 
a promoter of at least 1 detectably expressed gene. F) Number of sites that linked into CCANs 
that are matched in experiment 1 and experiment 2 by a maximum weighted bipartite matching 
method (see Methods). Also shown are sites that are linked into CCANs that are not matched at 
all and sites that are linked into CCANs that are matched in experiment 1 and experiment 2, but 
not to one another. G) Fraction of pairs of sites linked in experiment 1 at co-accessibility > 0.25 
that are also linked in experiment 2 at co-accessibility > 0. Colors indicate the quartile of 
accessibility in experiment 2. H) Reciprocal plot to panel G, examining sites linked at co-
accessibility > 0.25 in experiment 2 and > 0 in experiment 1. Colors indicate the quartile of 
accessibility in experiment 1. I) Sites linked into CCANs found in both phase 1 and phase 2 by 
maximum matching, subdivided by those that were linked into the CCAN in both phases (yellow), 



those linked in phase 1 but unlinked in phase 2 (red), those unlinked in phase 1 but linked in 
phase 2 (green), and those linked into different (i.e. non-matched) CCANs in the two phases. The 
four groups of sites from Figure 2B,C,E are considered. The left bar in each group corresponds 
to experiment 1, while the right bar corresponds to experiment 2. J) Similar to panel I but 
considering only promoters: groups are promoters of genes that are “stably” expressed at an 
unchanged level, those that are silent in myoblasts but expressed in myotubes (“activated”), and 
those expressed in both myoblasts and myotubes, but higher in myotubes (“upregulated”). 
Similarly, we show promoters of genes that are downregulated or fully silenced in myotubes, as 
well as those that are not detectably expressed (at a level of 10 transcripts per cell on average) 
in either cell type. K) A heatmap of regression coefficients from three multinomial elastic net 
regression analyses that predict whether a site will join, leave, or remain linked into its CCAN 
during differentiation on the basis of varying sequence motifs. Coefficients were capped at -0.25 
and 0.25 for visualization. Only sites with consistent CCAN dynamics across both experiments 
were included in the models. The number of positive and negative coefficients surviving 
regularization in each model are shown in the barplot to the right. Regression was performed 
using the glmnet package in R and the regularization parameter was chosen that produced the 
minimum mean cross-validated error after 10-fold cross validation.  
 
 
 
 
 



 
Supplemental Figure 5. ChIA-PET anchors are concordant with sci-ATAC-seq peaks, 
related to Figure 4. A) Percent of pol II ChIA-PET anchors within 1 kb of a sci-ATAC-seq peak 
as a function of ChIA-PET anchor score provided by Tang et. al. (2015). B) Percent of sci-ATAC-
seq peaks within 1 kb of pol II ChIA-PET anchors as a function of overall cell accessibility (number 
of cells where the peak is accessible). C) Odds ratio that both members of Cicero linked pairs 
(co-accessibility > 0) are in the same TAD, compared with unlinked pairs at the same distance. 
GM12878 TAD calls are from (Rao et al., 2014). D) Odds ratio that both members of Cicero linked 
pairs (co-accessibility > 0) are in the same A/B compartment, compared with unlinked pairs at the 
same distance. A/B compartment calls are from (Fortin and Hansen, 2015). 
 



 
Supplemental Figure 6. DNA motifs predict motifs in Cicero-linked sites, related to Figure 
5. A) Motifs in accessible sites predict motif content of Cicero-linked sites. The network 
summarizes a graphical model that captures how occurrences of motifs in pairs of sites predict 
whether they are connected. Each motif is connected to the motifs it suggests will exist in one or 
more connected sites. A motif that predicts itself in a connected site is shown in dark blue. If motif 
“A” at a distal site predicts that “B” will be found at a promoter, and symmetrically “B” at a distal 
site suggests “A” will be found at a promoter, they are connected with a black line, with a width 
proportional to the strength of the co-accessibility. Asymmetric motif relationships are not shown. 
B) Variance explained by a linear model that aims to predict log2-transformed fold changes in the 
listed ChIP-seq read counts between myoblasts and myotubes. Two models are considered. The 
first, with performance indicated as gray bars, uses a site’s accessibility and MYOD1 binding 
status. The second, indicated as black bars, augments the first with accessibility and MYOD1 at 
linked sites. The predictor for MYOD1 at linked sites was significant (p-value < .05) for all 
augmented models. See Methods for more details.  



 
 
Supplemental Figure 7. Expression correlation increases with increasing co-accessibility, 
related to Figure 6. Correlation in expression among linked differentially expressed genes. 
Boxplots of the cell-wise correlation between gene expression among pairs of differentially 
expressed genes whose promoters have different Cicero co-accessibility scores. 
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Supplemental Table 1. sgRNA sequences targeting Meis1, PBX1 and non-targeting 
controls, related to STAR Methods 

sgRNA Gene targeted sgRNA sequence 

Meis1_1 Meis1 TACTTGTACCCCCCGCGAGC 

Meis1_2 Meis1 CACAGCTCATACCAACGCCA 

Meis1_3 Meis1 GGTGGCCACACGTCACACAG 

Meis1_4 Meis1 ACTCGTTCAGGAGGAACCCC 

PBX1_1 PBX1 GATCCTGCGTTCCCGATTTC 

PBX1_2 PBX1 TGGTCCGGCTTTGCTCTCGC 

PBX1_3 PBX1 CCTGCGCCTCATCCAAACTC 

PBX1_4 PBX1 CGGCCATCCCGACCCCAGCA 

PBX1_5 PBX1 TGTGAAATCAAAGAAAAAAC 

NTC_1 Non-targeting control ACGGAGGCTAAGCGTCGCAA 

NTC_2 Non-targeting control CGCTTCCGCGGCCCGTTCAA 

NTC_3 Non-targeting control ATCGTTTCCGCTTAACGGCG 

NTC_4 Non-targeting control GTAGGCGCGCCGCTCTCTAC 

NTC_5 Non-targeting control CCATATCGGGGCGAGACATG 
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